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Abstract 
Exposure to continuous stress can have a negative impact 
on a person’s mental and physical well-being. Stress mon-
itoring and management, with the aim to analyze or miti-
gate the effects of stress, are an active area of research. 
A promising approach for detecting stress is by measur-
ing bio-signals such as an electroencephalogram (EEG) or 
an electrocardiogram (ECG). In this study, we introduce a 
wearable in- and over-ear device that measures EEG and 
ECG signals simultaneously. The device is composed of 
dry and soft sensing electrodes which are conformally in-
tegrated on the surface of earbuds. We carried out a pilot 
study exposing test subjects to three standard stressors 
(stroop, memory search, and mental arithmetic) while mea-
suring their EEG and ECG signals. Preliminary results in-
dicate the feasibility of classifying various stress conditions 
using a convolutional neural network. 
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Figure 1: Proposed multimodal 
biometric sensing wearable. 
(a) In-and over-ear biometric 
sensing device with EEG & ECG 
electrodes and signal recording 
system. (b) Detailed view of the 
in-ear EEG electrode (c) Detailed 
view of over-ear ECG electrode. 
(d) Magnified image of designed 
ease-access connectors 
structures. (e) User wears 
proposed prototype. 

Introduction 
Stress is defined as human body’s unspecific reaction to 
a perceived mental, emotional or physical distress [11]. 
Chronic stress is one of the major factors involved in sev-
eral medical diseases including depression, cardiovas-
cular disease, stroke, and even cancers [3, 12, 17]. Eval-
uating and managing stress in everyday life is important 
because early detection of stress may help prevent se-
vere health problems. Traditionally, stress has been mea-
sured and evaluated by questionnaires, and chemical and 
physiological methods [7, 10, 20]. Recently, physiological 
stress detection methods that combine various signals have 
become popular due to their ease of access and fast re-
sponse, and as they enable continuous monitoring. The 
Electroencephalogram (EEG) and the Electrocardiogram 
(ECG) have shown to be among the most promising physi-
ological bio-signals for the detection of stress levels. [1, 3]. 
Previously, researchers showed that simultaneously record-
ing EEG and ECG signals in combination with machine 
learning (ML) techniques has the potential to improve the 
accuracy of stress assessment [6]. More recent works have 
adopted a wearable form factor for recording biosignals [5]. 
However, measuring both EEG and ECG signals in a sin-
gle wearable device remains challenging due to limited and 
localized on-body signal collecting spots [8]. Moreover, cur-
rent wearable biometric signal measuring devices are often 
impractical due to their obtrusive designs [4, 14]. 

Here, we present a wearable in-and over-ear biometric 
sensing device that measures EEG and ECG signals si-
multaneously and evaluate its performance for stress detec-
tion. We propose a novel sensing electrode which is highly 
conductive, dry and flexible(as shown in Figure 1). It was 
designed with portability and comfortable long-term usage. 
It is worth noting that our design realized simultaneously 
recording of ECG and EEG signal with a highly integrated 

single-volume device for the first time. In this pilot study, 
biometric signals were recorded using from test participants 
subjected to three standard stress inducing experiments. A 
convolutional neural network (CNN) was trained to classify 
stress conditions from the biometric signals. The experi-
mental results suggest that the proposed bio-sensing head-
set records signals directly applicable to stress detection 
and monitoring. 

Related Work 
Stress detection has been widely investigated in the area 
of physiological signal measurement. Heart rate variabil-
ity (HRV), Electro dermal activity (EDA), electromyogram 
(EMG), and body movement are the most widely used 
physiological signals for stress detection [21]. By combin-
ing various biosignals, e.g., HRV and EDA, two-class stress 
classification with an accuracy of around 90 percent was 
shown previously [2, 5]. Using a 14-channel head-worn 
EEG system, it was reported 89 percent accuracy for clas-
sifying four stress levels [19]. However, a standard EEG 
recording device is not suitable for daily use due its weight, 
design, and lack of portability [4, 15]. We introduce an EEG 
and ECG sensing device in a headset form factor. 

In- and Over-Ear Biometric Sensing Device 
we propose a wearable in- and over-ear biometric headset 
designed as a sports earphone that offers reliable signal 
recording (Figure 1(a)). The mechanical frame was de-
signed and fabricated using a 3-D printer (Ultimaker Cura) 
with a combination of rigid (blue frame composed of ABS) 
and flexible materials (yellow frame composed of thermo-
plastic polyurethane). A pair of in-ear EEG electrodes and 
over-ear ECG electrodes were integrated on each side of 
the frame. One common ground electrode was placed in 
the left ear for both EEG and ECG signal measurement. An 
integrated recording circuit was embedded on the back of 
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Figure 2: Electrode and system 
characteristics. (a) Electrical 
characteristics of dry-type 
CNTs/PDMS electrodes fabricated 
using different CNT types and 
weight percent. (b) Skin-electrode 
contact impedance comparison 
between CNTs/PDMS electrode 
and commercial Ag/AgCl electrode. 
(c) System overview. 

the device and connected to the electrodes with a harness. 
The fabricated conductive and flexible dry electrodes were 
integrated as both EEG (Figure 1(b)) and ECG electrodes 
(Figure 1(c)). The electrodes and measurement circuit were 
connectedby snap button connectors allowing ease of elec-
trode replacement when necessary (cf. Figure 1(d-e)). 

Sensor Fabrication and System 
Due to the small signal amplitude of EEG and ECG mea-
sured at the ear (on the order of few µV), the sensing elec-
trodes should be highly conductive and the measurement 
system should offer high signal amplification. The advan-
tages of composite dry electrodes for wearable systems 
include low cost, ease of manufacturing, and good skin con-
formability without dehydration. Conductive carbon nan-
otubes (CNTs) and polydimethylsiloxane (PDMS) were 
mechanically mixed together to form CNTs/PDMS com-
posite as a sensing material. Electrode sheet resistance 
changes as a function of the average length of CNTs (20 
µm for short CNT, SCNT ; 100 µm for long CNT, LCNT ). 
Mass loading of CNTs in PDMS matrix (10 wt % of LCNT) 
directly influences electrode sheet resistance which was 
optimized by adding high wt % and long CNTs to PDMS 
(Figure 2(a)). The skin-electrode contact impedance at 30 
wt% LCNT of the optimized condition was equivalent to that 
of commercial (Ag/AgCl) wet electrodes (Figure 2(b)). 

To enable reliable recording of small-amplitude signals in a 
frequency range of 0.5–30 Hz (characteristic signals of in-
terest), the EEG and ECG signals pass through an analog 
front-end (INA 118, Texas Instruments Inc.), third-order But-
terworth band-pass filter (fc = 0.5–30 Hz), 3000-times sig-
nal amplifier (OP497, Analog Devices Inc.) and a 1 kHz A/D 
converter (AD974, Analog Devices Inc.) (cf. Figure 2(c)). 
The signals were finally transmitted to a microprocessor (32 

Figure 3: (a) Power spectral density and (b) Spectrogram of EEG 
signal, exhibiting alpha wave near 10 Hz; (c) ECG signal from dry 
CNTs/PDMS electrode at arm (blue) and ear (red), and reference 
wet Ag/AgCl electrode at ear (black); (d) ECG QRS peaks. 

bit ARM Cortex-M4) and transferred by a Bluetooth module 
(Bluetooth Mate Silver, SparkFun Electronics). 

EEG and ECG Signal Measurement 
In accordance with the standard EEG and ECG paradigm, 
alpha rhythm detection and QRS peak detection were con-
ducted for feasibility validation. In the EEG measurement, 
the right in-ear source electrode, left in-ear reference elec-
trode, and left in-ear ground electrode were used. Subjects 
were instructed to close their eyes for 30 seconds (s) during 
the 60 s recording. The alpha peak was measured near 10 
Hz while eyes were closed, as shown in the power spec-
tral density in Figure 3(a). The EEG spectrogram showed 
highly detailed information including the time, frequency 
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Figure 4: Questionnaire results for 
(a) Stroop, (b) Memory search, and 
(c) Mental arithmetic task. 

and power of the EEG signal (Figure 3(b)). For the ECG 
detection, signal collection was based on using electrodes 
which are under the right ear as source electrode, under 
the left ear as reference electrode, and left in-ear as ground 
electrode, respectively. In addition, to evaluate signal quality 
influenced by electrode position , additional electrodes were 
attached on arms according to the standard limb lead 1 po-
sition [18]. The conventional Ag/AgCl wet electrodes were 
attached at the same locations for comparison. The overall 
amplitude of the over-ear ECG (red line) was much lower 
than that of standard ECG (blue line) due to their closer 
distance to the heart.However, the signal quality of the dry 
electrodes was found to be similar to the commercial wet 
electrodes (black line) and clear QRS peaks were detected 
in over-ear ECG (Figure 3(c)).These results confirm that the 
developed biometric device enables simultaneous measure-
ment of EEG and ECG signals with high signal quality. 

Experimental Evaluation 
We recruited ten healthy subjects (mean age 29±5 years) 
for a pilot study to conduct bio-signal measurements under 
stress. The subjects were asked to perform three certified 
tasks to induce stress: Stroop, memory search, and mental 
arithmetic [3]. The experiments were divided into sepa-
rate sessions, as illustrated in Figure 5. Each experiment 
consisted of 3 minutes of stabilization, 90 seconds of re-
laxation, and 3 minutes of a stress-inducing task. Before 
starting the main user test, a stabilization period is estab-
lished before relaxation period during test preparation. Si-
multaneous in-ear EEG and over-ear ECG were acquired 
throughout the experiments. After each session, subjects 
were asked to complete a NASA-TLX questionnaire to ob-
tain an additional qualitative stress index [9]. This method 
also ensures effectiveness stress stimulation. According to 
the questionnaire, the performance and frustration ques-
tions were used mainly to measure the perceived stress 

Figure 5: Experiment protocol. 

level of the subjects; a low score for the performance ques-
tion and a high score for the frustration question indicates 
a subject’s elevated level of mental stress. The stroop task 
(Figure 4(a)) induced weaker stress levels than memory 
search (Figure 4(b)) and mental arithmetic (Figure 4(c)), as 
shown by higher performance and lower frustration scores. 

Stress Detection Results 
Neural networks have shown promising results for analysing 
raw time-domain EEG signals [13]. We trained a similar 
neural network to classify the experimental data of the pi-
lot study as "stressed" or "relaxed". The raw time-domain 
EEG and ECG signals were split into frames of 30 s with 
25 s overlap. All signals were resampled at 128 Hz and pre-
processed using a 60 Hz notch filter and a 1–40 Hz band-
pass filter. The classifier was trained separately for each 
subject with 3-fold cross validation, using the data from two 
experimental sessions for training and evaluating the per-
formance on the third hold-out session (cf. Figure 5). To 
avoid bias, the signals from each session were trimmed to 
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Figure 6: Box plots of per-frame classification accuracy for relaxed (light gray) and stressed condition (dark gray), for (a) EEG, (b) ECG, and 
(c) EEG and ECG combined. Subjects are sorted from highest to lowest average combined classification accuracy. 

ensure an equal number of “relaxed” and “stressed” frames, 
for an average of about 19 frames per session and class for 
each subject. The neural network consists of four dilated 
convolutional layers with rectified linear unit (ReLU) activa-
tion, batch normalization, and max pooling. These first four 
layers form a convolutional neural network (CNN) used to 
extract features from the raw time-domain signals. Imple-
mentation details of the CNN are given in Table 1. The final 
convolutional layer is followed by a 50% dropout layer, a 
fully connected layer with eight hidden units, and a final lin-
ear layer with two outputs corresponding to the two classes 
“relaxed” and “stressed”. The neural network was imple-
mented in PyTorch 1.1 using default functions and parame-
ters and trained over 100 epochs using stochastic gradient 
descent and negative log-likelihood loss, with a batch size 
of 64 and a learning rate of 0.001. 

Figure 6 illustrates the per-frame classification results of the 
neural network. Performance varies greatly by subject. This 
may be attributed to a variety of factors, including measure-
ment noise and individual differences in terms of the stress 
levels experienced and the fit of the proposed biometric 

layer 1 layer 2 layer 3 layer 4 

number of filters 6 8 12 12 
kernel 1 × 8 1 × 8 1 × 4 1 × 4 
stride 1 × 2 1 × 2 1 × 2 1 × 2 
dilation 1 × 1 1 × 2 1 × 2 1 × 2 
pool kernel 1 × 3 1 × 3 1 × 3 1 × 3 
pool stride 1 × 2 1 × 2 1 × 2 1 × 2 

Table 1: Convolutional neural network (CNN) architecture. 

measurement device given each subject’s individual signal 
topology [16]. Figure 6c) shows per-frame classification re-
sults obtained by assigning the output of the EEG and ECG 
classifiers with the highest probability (i.e., the maximum 
negative log-likelihood) to each frame. 

Table 2 summarizes the classification results for EEG, 
ECG, and the combined classifier. As can be seen, combin-
ing the EEG and ECG classification results leads to slightly 
improved average per-frame classification performance. To 
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per-frame per-session 
“relaxed” “stressed” “relaxed” “stressed” 

EEG 67.1 69.0 72.7 78.8 
ECG 73.1 63.2 75.8 66.7 
combined 72.3 68.4 75.8 75.8 

Table 2: Percentage of correct classifications, averaged over all 
test subjects and experiment sessions. 

arrive at a single classification per subject and experiment 
session, a voting strategy is employed whereby for each 
session the most frequent classification output is chosen as 
the per-session result. The average per-session classifica-
tion accuracy exceeds 70% for all conditions except for the 
ECG classifier and the “stressed” condition. 

Conclusions and Future Work 
We introduce a wearable in and over-ear biometric sensing 
device to monitor stress conditions via multimodal physio-
logical signals. The proposed device is able to detect stress 
by simultaneously recording EEG and ECG signals with ro-
bust signal quality. The nano-materials flexible electrodes 
offers robust bio-signal recording while providing user com-
fort. A pilot study suggests that a neural network is capa-
ble of classifying relaxed and stressed mental states of a 
user by analysing two minutes of EEG and ECG signals ob-
tained with the proposed device, with an average accuracy 
of about 75%. We believe that the design reported in this 
study has significant potential in active and social bio-signal 
measurement applications. The stress detection in this pa-
per was conducted in laboratory conditions. However, we 
envision that the proposed wearable biometric sensing de-
vice can be used in various daily activities. Future work 
includes field studies in a larger variety of stress-inducing 
conditions. Collecting data from a larger subject pool would 

allow improving classification performance as well as train-
ing and evaluating a between-subject classifier that does 
not require per-subject training. 
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