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Figure 1: Modified images with sound-guided semantic image manipulation. Our method manipulates source images (top
row) given user-provided sound (middle row) into semantic images (last row).

Abstract

The recent success of the generative model shows that
leveraging the multi-modal embedding space can manipu-
late an image using text information. However, manipulat-
ing an image with other sources rather than text, such as
sound, is not easy due to the dynamic characteristics of the
sources. Especially, sound can convey vivid emotions and
dynamic expressions of the real world. Here, we propose
a framework that directly encodes sound into the multi-
modal (image-text) embedding space and manipulates an
image from the space. Our audio encoder is trained to pro-
duce a latent representation from an audio input, which is
forced to be aligned with image and text representations in
the multi-modal embedding space. We use a direct latent op-
timization method based on aligned embeddings for sound-
guided image manipulation. We also show that our method
can mix different modalities, i.e., text and audio, which en-
rich the variety of the image modification. The experiments
on zero-shot audio classification and semantic-level image
classification show that our proposed model outperforms
other text and sound-guided state-of-the-art methods.

1. Introduction

Image manipulation has been widely studied in the field
of computer vision due to its usefulness in photo-realistic
manipulation applications, social media image sharing, and
image-based advertisement. An image can be used to trans-
fer its style into the target image [14, 13]. Also, modifying
specific parts in the human face image, such as hairstyle or
color, is useful in image manipulation applications [49, 34].
The purpose of semantic image manipulation is to generate
a novel image that contains both source image identifica-
tion and semantic information of user intention. In this pa-
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per, we tackle the semantic image manipulation task, which
is the task of modifying an image with user-provided se-
mantic cues. To apply the user intention into the image, a
mixture of sketches and text is used to perform image ma-
nipulation and synthesis [33, 49]. User intention can be ap-
plied by drawing a paint [33] or writing text with semantic
meanings [49, 13].

Text-based image manipulation methods are proposed to
edit the image conditionally [11, 21, 26, 29, 49]. These
works modify target contents in the image based on the
text information. Among the text-based image manipula-
tion methods, StyleCLIP [34] considered leveraging the
representational power of Contrastive Language-Image Pre-
training (CLIP) [37] models to produce text-relevant ma-
nipulations with given text input. StyleCLIP maintains high
quality image generation ability using StyleGAN [20] while
allowing insertion of semantic text into the image.

However, text-based image manipulation has an inherent
limitation when applying sound semantics into the image.
It is impossible to fully express vivid sound with discrete
text since sound has continuous and dynamic properties. For
example, every “thunder” generates different loudness and
characteristic of “sound of thunder”. The infinite range of
sound variations is not interchangeable with discrete text
expressions. Therefore, the text-based image manipulation
methods suffer from the discreteness of the text expression,
limiting the transfer of specific and vivid sound semantics
into the source image in image manipulation with sound se-
mantics.

Several studies [7, 18, 30, 36, 47, 52] have attempted
to visualize the meaning of sound, but it is still challeng-
ing to reflect sound events in high-resolution images due
to two reasons. The first reason is the lack of a suitable
high-resolution audio-visual dataset. Audio-visual bench-
mark video datasets [5, 24, 42] for GAN training has gener-
ally lower resolution than high-resolution image datasets in-
cluding Flickr-Faces-HQ (FFHQ) [22] and The Large-scale
Scene Understanding Challenge (LSUN) [50]. There is no
dataset with as many audio-visual pairs as the number of
image-text pairs used for CLIP training. CLIP uses 400 mil-
lion image-text pair data to learn the relationship between
very large and diverse image and text modalities, whereas
audio-visual pair data is still insufficient. Secondly, it is
difficult to discover potential correlations between auditory
and visual modalities [52]. Extracting appropriate temporal
context, tone, and theme from the sound is difficult.

To overcome these challenges of manipulating images
with sound semantics, we introduce a novel image manipu-
lation method driven by sound semantics (see Fig. 2). As
shown in Fig. 1, an image of an old car is manipulated
into an old car with a fire truck-like exterior appearance
when adding a siren sound. Our model consists of two
main stages: (i) the CLIP-based Multi-modal Representa-

tion Learning, where an audio encoder is trained to pro-
duce a latent representation aligned with textual and visual
semantics by leveraging the representation power of pre-
trained CLIP models. (ii) the Sound-Guided Image Manip-
ulation, where we use the direct latent code optimization to
produce a semantically meaningful image in response to a
user-provided sound.

Our experimental results show that the proposed method
supports a variety of sound sources with a better reflection
of given audio information when transferring image styles.
The sound-based approach supports more diverse and de-
tailed information related to scenes compared to text-based
image manipulation methods. We illustrate diverse exam-
ples in the supplemental material and project website.

Our main contributions are listed as follows:
• We propose multi-modal contrastive losses to expand

the CLIP-based embedding space. Moreover, we in-
troduce contrastive learning on augmented audio data,
which helps to learn a more robust representation.

• We propose semantic-level image manipulation solely
based on the given audio features, including temporal
context, tone, and volume.

• We propose the sound-guided code optimization steps
with adaptive layer masking for putting sound meaning
into images, enhancing the realism of the output.

2. Related Work

Text-guided Image Manipulation. Text-guided image ma-
nipulation is the most widely studied among guidance based
tasks. Several studies [10, 26, 29] employed the GAN-based
encoder-decoder structure to preserve the features of the im-
age while presenting image manipulations corresponding to
the text description. StyleCLIP [34] and TediGAN [49] uti-
lize the latent space of the pre-trained StyleGAN and the
prior knowledge from CLIP [37]. StyleCLIP performed im-
age manipulation using a user-provided text prompt. Te-
diGAN enabled image generation and manipulation using
GAN inversion technique using multi-modal mapping. Be-
yond text and images, a sound can express a complex con-
text appearing in a scene, and there is correspondence be-
tween a sound and an event occurring in the scene.
Sound-guided Image Manipulation. Sound contains tem-
poral dynamic information of a scene, which can be used
as an imagery source for image manipulation. Some ap-
proaches have been introduced for the sound-guided im-
age manipulation task. However, the previous works mainly
focus on music (instead of using sound semantics), which
includes music-to-visual style transfer with cross-modal
learning strategy [25] and a neural music visualizer by map-
ping music embeddings to visual embeddings from Style-
GAN [20]. To manipulate the image according to the sound,
TräumerAI [20] visually expresses music by latent transfer
mapping of music to StyleGAN’s style embedding.
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Figure 2: Our model consists of two main steps: (a) the CLIP-based Contrastive Latent Representation Learning step and (b)
the Sound-Guided Image Manipulation step. In (a), we train a set of encoders with three different modalities (audio, text, and
image) to produce the matched latent representations. The latent representations for a positive triplet pair (e.g., audio input:
“Explosion”, text: “explosion”, and corresponding image) are mapped close together, while that of negative pair samples
further away in the (CLIP-based) embedding space (left). In (b), we use a direct code optimization approach where a source
latent code is modified in response to user-provided audio, producing a sound-guided image manipulation result (right).

However, the above studies have limitations in focus-
ing only on the reaction, not the semantic of the sound, in
the direction of navigation in the latent space of StyleGAN.
Crossing you in style [25] uses the period to define the se-
mantic relationship between sound and visual domain, but
there is still a limitation which only can transfer the im-
age style. Our proposed method can isolate the modification
area in the source image, such as modifying the emotion of
the face while preserving the color of the hair.

Interpreting Latent Space in StyleGAN. The intermediate
latent space in pre-trained StyleGAN [22] solves the disen-
tanglement issue and allows the generated images to be ma-
nipulated meaningfully according to changes in the latent
space. Extended latent space W+ allows image manipu-
lation with interpretable controls from a pre-trained GAN
generator [1, 22, 23]. For latent space analysis in audio se-
quences, Audio-reactive StyleGAN [4] generates an image
every time step by calculating the magnitude of the audio
signal and moving it in the latent space of StyleGAN. How-
ever, the method cannot control the meaning of sound in the
latent space. StyleGAN’s motion in the latent space is only
mapped to the magnitude of the sound. There is a novelty in
that we manipulate images with the properties of sound.

Audio-visual Representation Learning. Cross-modal rep-
resentation learning obtains relationships between differ-
ent modalities in audio-visual tasks such as video retrieval
and text-image cross-modal tasks such as image captioning
and visual question answering. Audio-visual representation
learning studies [3, 28, 44] aim to map both modalities to
the same embedding space. The correlation between modal-
ities is learned by contrastive learning between composite
audio-visual pairs [8, 27, 43]. However, audio-visual rep-
resentation learning is still challenging because there is no
adequate data as much as CLIP [37] for learning the corre-

lation between different modalities. CLIP learned the rela-
tionship between image and text embedding by multi-modal
self-supervised learning of 400 million image-text pairs and
showed zero-shot inference performance comparable to su-
pervised learning in most image-text benchmark datasets.
In this paper, the audio encoder not only exploits the repre-
sentation ability of CLIP but also learns supervisory signals
from the audio data itself through self-supervised manners.
As a result, our method obtains an audio-specific represen-
tation for sound-guided image manipulation.

3. Method
We follow the existing text-guided image manipulation

model, StyleCLIP [34]. Our model and StyleCLIP manip-
ulate the latent code of StyleGAN using joint embedding
space between modalities. However, our model extends
the CLIP [37] embedding space to the audio embedding
space, which was not embedded before. We also introduce
novel contrastive losses and adaptive masking for sound-
guided image manipulation. Our model consists of two
main steps: (i) the CLIP-based Multi-modal Latent Repre-
sentation Learning and (ii) the Sound-guided Image Manip-
ulation. First, we train audio, text, and image encoders to
generate new latent representations. To do so, we train the
audio encoder using the InfoNCE loss [31, 2, 51] to produce
a latent representation that is aligned with the representa-
tions from the pre-trained CLIP’s text and image encoders.
Such aligned representations can be used for image manip-
ulation with the provided audio input. After the pre-training
step, we use encoders to manipulate images according to a
target sound input (e.g., images with different facial expres-
sions can be manipulated with different sound inputs).
3.1. Multi-modal Latent Representation Learning

As shown in Fig. 2 (a), we train a set of encoders with
three different modalities {audio, text, and image} to pro-
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duce the matched representations in the embedding space.
Specifically, given audio, text, and image inputs, i.e. xa,
xt, and xv , we use three different encoders to obtain a
set of d dimensional latent representations, i.e. a, t, and
v ∈ Rd, respectively. These latent representations are
learned via a typical contrastive learning approach follow-
ing the work by Radford et al. [37] – the latent represen-
tations for a positive triplet pair are mapped close together
in the embedding space, while that of negative pair sam-
ples further away. Learning such a joint representation from
scratch is, however, generally challenging due to the lack of
multi-modal datasets, which can provide positive and neg-
ative pairs. Thus, we instead leverage the pre-trained CLIP
model, which optimized a visual-textual joint representation
by contrastive learning. Then, we train an audio encoder
to produce an aligned representation by using contrastive
learning. Details are explained in the next section. Note that
we obtain a latent representation â ∈ Rd from an aug-
mented audio input x̂a, which is shown useful to improve
the quality of the latent representation as this is a common
practice in the self-supervised representation learning.
Matching Multi-modal Representations via Contrastive
Loss. We use the InfoNCE loss [2] to map positive audio-
text pairs close together in the CLIP-based joint embedding
space, while negative pairs further away. Formally, given
a minibatch of N audio-image representation pairs {ai, tj}
for i ∈ {1, 2, . . . , N}, we first compute the following audio-
to-text loss function for the i-th pair:

l
(a→t)
i = −log

exp(⟨ai, ti⟩/τ)∑N
j=1 exp(⟨ai, tj⟩/τ)

, (1)

where ⟨ai, tj⟩ represents the cosine similarity, i.e.
⟨ai, tj⟩ = a⊺i tj/∥ai∥∥tj∥ and τ is a temperature parame-
ter. This loss function is the log loss of an N -way classifier
that wants to predict {ai, tj} as the true representation pair.
As the loss function is asymmetric, we define the following
similar text-to-audio contrastive loss:

l
(t→a)
i = −log

exp(⟨ti,ai⟩/τ)∑N
j=1 exp(⟨ti,aj⟩/τ)

. (2)

Concretely, we minimize the following loss function Lnce

as a sum of the two losses l(a→t)
i and l

(t→a)
i for all positive

audio-text representation pairs in each minibatch of size N :

L(a↔t)
nce =

1

N

N∑
i=1

(l
(a→t)
i + l

(t→a)
i ). (3)

Applying Self-supervised Representation Learning for
Audio Inputs. Self-supervised learning approaches rely on
a contrastive loss that encourages representations of the
same-class different views to be close in the embedding
space, while that of different-class views to be pushed away
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Figure 3: Multi-modal contrastive learning with audio self-
supervised loss.

from each other. We apply this technique to improve the
quality of audio representations by minimizing the follow-
ing L(a↔â)

self :

L(a↔â)
self =

1

N

N∑
i=1

(l
(a→â)
i + l

(â→a)
i ), (4)

where l
(a→â)
i and l

(â→a)
i are defined in a similar way as

in Eq. 1 and 2. This loss function is useful to learn sub-
tle differences over sound inputs as it needs to maximize
the mutual information between two different views of the
same inputs but to minimize the mutual information be-
tween two views of the different inputs. For example, as
shown in Fig. 3, an audio sample ai forms a negative pair
with âj for i ̸= j, which induces a diffusive effect in the
embedding space.
Data Augmentation. We further apply the data augmenta-
tion strategy to improve the quality of representations and
to overcome the lack of large-scale audio-text multimodal
datasets. For audio inputs, we apply the SpecAugment [32],
which visually augments Mel-spectrogram acoustic fea-
tures by warping the features and masking blocks of fre-
quency channels. For text inputs, we augment text data by
(i) replacing words with synonyms, (ii) applying a random
permutation of words, and (iii) inserting random words.
Note that, for (i) we find synonyms of the given word from
WordNet [12] and insert the synonym anywhere randomly
in the given text input. For example, we augment original
texts “rowboat, canoe, kayak rowing” to produce new text
“row canoe, kayak quarrel rowboat.”
Loss Function. To summarize, we minimize the following
loss function Ltotal:

Ltotal = L(a↔v)
nce + L(a↔t)

nce + L(a↔â)
self . (5)

3.2. Sound-guided Image Manipulation

After learning the multi-modal joint embedding space
by minimizing Eq. 5, we use a direct latent code optimiza-
tion method to manipulate the given image similar to Style-
CLIP [34]. As shown in Fig. 2 (b), our model minimizes the
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distance between a given source latent code and an audio-
driven latent code in the learned joint embedding space to
produce sound-guided manipulated images. Moreover, we
propose a Adaptive Layer Masking technique, which adap-
tively manipulates the latent code.
Direct Latent Code Optimization. We employ the direct
latent code optimization for sound-guided image manipula-
tion by solving the following optimization problem:

Lman = argmin
wa∈W+

dcosine(G(wa), a) + λIDLID(wa)

+ λsim||g · (wa − ws)||2,
(6)

where a given source latent code ws ∈ W (the interme-
diate latent space in StyleGAN), audio-driven latent code
wa ∈ W+. g is a trainable vector to mask the specific
style layer adaptively. LID and G are the identity loss and
StyleGAN-based generator, respectively. λsim and λID are
hyperparameters to control the strengths of the similarity
loss term and the identity loss function LID. High values of
λsim and λID lead to maintaining the content of the source
image, while low values do not. The source latent code ws

means the randomly generated latent code from G or the
latent code obtained from the existing input image through
GAN inversion [38, 45]. With such an optimization scheme,
we minimize the cosine distance dcosine(G(wa), a) between
the embedding vectors of the manipulated image G(wa) and
the audio input a.
Identity Loss. The similarity to the input image is also con-
trolled by the identity loss function LID, which is defined:

LID(wa) = 1− ⟨R(G(ws), R(G(wa)))⟩. (7)

R is the pre-trained ArcFace [9] model for face recogni-
tion, thus this loss function minimizes the cosine distance
⟨R(G(ws), R(G(wa)))⟩ between its arguments in the latent
space of the ArcFace network. This allows manipulating
facial expressions without changing the personal identity.
Note that we disable the identity loss by setting λID = 0 for
all other image manipulations.
Adaptive Layer Masking. We control style changes with
adaptive layer masking. L2 regularization is effective in
keeping the image generated from the moved latent code
from being different from the original [34]. However, Style-
GAN’s latent code has different properties per each layer,
so different weights should be applied to each layer if the
user-provided attribute changes. We use layerwise mask-
ing to keep compact content information within style la-
tent code. In StyleGAN2 [23], the latent code represents as
w ∈ RL×D, where L is the number of the network lay-
ers, and D is the latent code’s dimension size. We declare
a parameter vector g in L dimension. In latent optimization
step, g and w are multiplied per layer. g is iteratively up-
dated, which adaptively manipulates the latent code.

Input image
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Figure 4: Comparison of sound-guided manipulation re-
sults. Given fire crackling (top) and raining (bottom) audio
inputs, we manipulate the input image with TräumerAI [20],
Crossing you in style [25], and our method.

Sound and Text Multi-modal Style Mixing. Multi-modal
manipulation of audio and text is based on style mixing of
StyleGAN. Different layers of w latent code in StyleGAN
represent different properties. Because audio and text share
the same new multi-modal embedding space, selecting a
specific layer of each latent code guided by audio and text
can manipulate the image using properties of audio and text.

4. Experiments
Implementation Details. We use the pre-trained CLIP [37]
as image and text encoder. For our audio encoder, we use
ResNet50 [19] as backbone, where we employ the same
output dimension, 512, as the image and text encoder. First,
we convert audio inputs to Mel-spectrogram acoustic fea-
tures. Then, our audio encoder takes these features as an
input to produce a 512-dimensional latent vector. The de-
tails about the train dataset are explained in supplemen-
tal material. For the manipulation step, we leverage Style-
GAN2 [23]’s pre-trained generator. We set the size of latent
code based on the resolution of the learned image. Here, we
set 18× 512 for images of size 1024× 1024 and 14× 512
for 256× 256.

We train our model for 50 epochs using the Stochastic
Gradient Descent (SGD) with the cosine cyclic learning rate
scheduler [41]. We set the learning rate to 10−3 with the
momentum 0.9 and weight decay 10−4. The batch size is set
to 384. For audio augmentation, we use SpecAugment [32]
with the frequency mask ratio of 0.15 and time masking
ratio of 0.3. For direct latent code optimization, λsim and
λID in in Eq. (6) are set to 0.008 and 0.004 for the FFHQ
dataset; and 0.002 and 0 for the LSUN dataset.

4.1. Qualitative Analysis
Sound-guided Image Manipulation. We first com-
pare our sound-guided image manipulation model with
existing sound-based style-transfer models including
TräumerAI [20] and Crossing you in Style [25]. Fig. 4
showcases image manipulation results in response to
given audio inputs, including fire crackling and raining.
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Figure 5: Given the (a) input image, we compare the im-
age manipulation results between (b-c) text-driven image
manipulation approaches (i.e. TediGAN [49] and Style-
CLIP [34]) and (d) ours. Attributes for driving such ma-
nipulations include baby crying, people coughing, people
giggling, and people screaming.

We observe that our model produces a better quality of
manipulated images where existing models often fail to
capture semantic information of the given audio input (See
2nd and 3rd columns).
Comparison of Text-guided Image Manipulation. We
use the latest text-guided image manipulation models
as a baseline, including TediGAN and the latent opti-
mization technology of StyleCLIP. As shown in Fig. 5,
the proposed sound-guided image manipulation (proposed
method) shows more radical results than text-guided manip-
ulation (TediGAN [49] and StyleCLIP [34]). Unlike text-
guided methods, the audio-guided approach achieves natu-
ral image style transfer while capable of reflecting multiple
labels. For example, TediGAN emphasizes crying, whereas
StyleCLIP focuses on the baby when “baby crying” context
is given. On the contrary, our proposed method is capable
of handling “baby” and “crying” simultaneously.

We demonstrate that each audio sample has its own con-
text, which makes the guidance richer than text (Fig. 6). If
the magnitude of Thunder is altered or a specific attribute
like Rain is added to the audio, the manipulation context be-
comes more diverse than text-guided image manipulation.

We visualize the direction vector with t-SNE [46] in a
supplemental document. By subtracting the vectors of the
latent code guided by each modality and the source latent
code, we show the distribution of manipulating direction.
We select the attributes in VGG-Sound [6] and randomly

Source Image

A
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io
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Raining 
w/o thunder

Raining 
w/ weak thunder

Raining 
w/ strong thunder

Figure 6: Comparison of manipulation results between ours
(top) and the existing text-driven manipulation approach,
StyleCLIP [34] (bottom). Unlike the text-driven approach,
ours can produce more diverse manipulation results in re-
sponse to different intensities of raining, i.e. raining, raining
with weak thunder, and raining with strong thunder.
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Figure 7: An example of image style mixing jointly with the
audio (people giggling) and text input (black woman).

manipulate the audio and text prompts. Although we ran-
domly sample the audio and text in the same labels, the
sound-guided latent code shows a more significant transi-
tion than the text-guided latent code. We use various text
synonyms for a fair comparison, but text-guided latent code
seems less effective with changes.
Multi-modal Image Manipulation. Our method ensures
that audio, text, and image share the same embedding space.
To demonstrate that multi-modal embedding lies in a same
latent space, we interpolated text and sound-guided latent
code (see supplementary document). Constructing multi-
modal shareable latent space enables joint modification of
the target image with user-provided text and audio inputs
from the same embedding space. We further perform multi-
modal style mixing experiments by selecting a specific layer
of latent code and mixing style with audio and text. We find
that the sound source can effectively manipulate facial emo-
tion aspects such as “giggling” on the face and text infor-
mation controls the background color of the target image
(Fig. 7). For the style-mixing details, we follow TediGAN’s
StyleGAN layerwise analysis [49]. In the 18 × 512 latent
code, the style-mixing technique selects the 1st to 9th layers
of the sound-guided latent code and the 10th to 18th layers
of the text-guided latent code to mix the dynamic character-
istics of sound and human properties of text.
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Figure 8: Ablation study of adaptive layer masking. The first
row is the input image, the second row is the manipulation
results without adaptive layer masking, and the third row is
the sound-guided image manipulation results after applying
the adaptive layer masking.

Effect of Adaptive Layer Masking. In StyleGAN [20], it
is necessary to adaptively regularize style layer since each
layer of latent code has different style attributes. For each
layer of latent code, it multiplies the trainable parameter
that controls the diversity during regularization. The abla-
tion study shows a qualitative comparison of the mechanism
for applying adaptive layer masking to the style layer, as il-
lustrated in Fig. 8. The adaptive masking rectifies the direc-
tion by changing the latent code based on the semantic cue.
When applying the gate function, sound-guided image ma-
nipulation is semantically reasonable. For example, a thun-
derstorm is a blend of thunder and rain sound. Although
thunder and lightning are not seen in the second row, light-
ning and rain appear in the last row. Manipulation results
according to λsim and λID hyperparameters are added to
the supplemental material.

4.2. Quantitative Evaluation
Zero-shot Transfer. We compare our model to the super-
vised method and the existing zero-shot audio classifica-
tion method (see Table 1). First, we compare audio em-
beddings trained by supervised methods such as logistic re-
gression, ResNet50 [19] supervised by random initializa-
tion of weights as a baseline model. Our audio encoder
shows better classification performance than the baseline.
Secondly, we compare the zero-shot audio classification ac-
curacy with Wav2clip [48] and AudioCLIP [16]. Our pro-
posed loss function learns three modalities in the CLIP em-
bedding space and obtains a more rich audio representa-

Table 1: Comparison of the quality of audio representations
between ours and alternatives. We report classification ac-
curacy (top-1 in %) of a linear classifier on the ESC-50 [35]
and the Urban sound 8k [39] datasets as well as their zero-
shot inference results. Abbr. S: supervised setting.

Model S Zero-shot Dataset

ESC-50 Urban sound 8k

ResNet50 [19] ✓ - 66.8 % 71.3 %
Ours w/o L(a↔â)

nce (LR) - - 58.7 % 63.3 %
Ours (LR) - - 72.2 % 66.8 %

Wav2clip [48] - ✓ 41.4 % 40.4 %
AudioCLIP [16] - ✓ 69.4 % 68.8 %
Ours w/o L(a↔â)

nce - ✓ 49.4 % 45.6 %
Ours - ✓ 57.8 % 45.7%

tion through the contrastive loss whereas Wav2clip only
learns the relationship between audio and visual context.
Although the performance of the AudioCLIP in zero-shot
task is better than ours, comparison between ours and Au-
dioCLIP is not an apple-to-apple comparison. This is be-
cause, AudioCLIP uses pretrained ESResNeXt [17] as an
audio encoder, which is different from ours. The Audio-
CLIP’s audio encoder was pre-trained on a large-scale dat-
saet of audio, namely AudioSet [15], which consists of over
2M sound clips. However, ours was trained in end-to-end
manner without benefits from such a large dataset. More-
over, our learned embedding space is more suitable for the
image manipulation task (see the supplemental material).
Semantic Accuracy of Manipulation. We quantitatively
analyze the effectiveness of our proposed audio-driven im-
age manipulation approach. First, we measure performance
on the semantic-level classification task. Given the audio
embeddings from our pre-trained audio encoder, we train a
linear classifier to recognize eight semantic labels including
giggling, sobbing, nose-blowing, fire crackling, wind noise,
underwater bubbling, explosion, and thunderstorm. We use
StyleGAN2 [23] weights pre-trained from the FFHQ [22]
dataset when guiding with giggling, sobbing, and nose
blowing attributes to compare the semantic-level classifica-
tion accuracy between text and audio. Also, when guiding
with fire crackling, wind noise, underwater bubbling, ex-
plosion, and thunderstorm attributes, the weights of Style-
GAN2 pre-trained with the LSUN (church) [50] dataset
are used. As shown in Fig. 9 (a), we generally outper-
form existing text-driven manipulation approach with better
semantically-rich latent representation.
Distribution of Manipulation Direction. We can see how
much the latent code has changed by the cosine similarity
between the source latent code and the manipulated latent
code. We compare the cosine similarity between text-guided
and sound-guided latent representations. We evaluate the
mean and variance of the cosine similarity between ws, a
source latent code, wa, an audio-driven latent code, and wt,
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Figure 9: Quantitative evaluation and user study results.
(a) Downstream task evaluation to compare the quality of
representations between ours and text-driven manipulation
approaches on the FFHQ [22] dataset. A linear classifier
is trained to predict 8 semantic labels, e.g. giggling. Par-
ticipants answered a questionnaire including (b) Natural-
ness (“Which image manipulation result better expresses
the target attribute?”) and (c) Perceptual realism (“On the
scale from 1 to 5, how realistic are the images below?”).

Input image Input imageExplosion Wind

Figure 10: Failure cases of manipulation with our method.

a text-driven latent code. The latent representations gener-
ally exhibit a high-level characteristic of the content (see
sup.). In the latent space of StyleGAN2, the sound-guided
latent code moves more from the source latent code than
the text-guided latent code, and the image generated from
the sound-guided latent code is more diverse and dramatic
than the text-guided method.

4.3. User Study
We recruit 100 participants from Amazon Mechanical

Turk (AMT) for evaluating our proposed method. We show
participants three manipulated images that are generated
by TediGAN [49], StyleCLIP [34], and our model. Partic-
ipants answer the following questionnaire: (i) Naturalness-
Which image manipulation result better expresses the tar-
get attribute? and (ii) Perceptual Realism- How realistic
are the images below? For perceptual realism, we employ
Likert scale ranging from 1 (low realistic) to 5 (high realis-
tic). Fig. 9 (b) and Fig. 9 (c) show that our method signif-
icantly outperforms other state-of-the-art approaches (Te-
diGAN and StyleCLIP) in terms of Naturalness and Per-
ceptual Realism. The large portion of participants (59.4%)
chose generated image by our model as the best. Moreover,
the result also shows that our method generated more natu-
ral images than other text-driven manipulation approaches.

5. Applications
Sound-Guided Artistic Paintings Manipulation. We pro-
pose a novel sound-guided image manipulation approach
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Funny music Latin music

Figure 11: Examples of sound-guided artistic paintings ma-
nipulation and music style transfer using our method.

for artistic paintings. We employ StyleGAN2 [23] gener-
ator which is pre-trained with the fine-art paintings dataset
called WikiArt [40]. As shown in Fig. 11, our model could
produce various manipulations for art paintings guided by
given audio inputs. We observe that an audio input can
successfully provide a semantic cue to manipulate artistic
paintings. Given a fire crackling sound, a painting is manip-
ulated with fire crackling. We also measured the manipu-
lation quality for artistic painting using the Wikiart dataset
using AMT. The responses showed that audio (73.3%) is
better than text (26.7%) in terms of manipulation.
Music Style Transfer. Our method has a potential to reflect
the mood of the music into the image style. Fig. 11 illus-
trates the results of image style transfer with various music
genres. The source latent code is close to the keywords of
each music, so the mood of the music appears in the image.
For instance, Funny music manipulates the image with a
fairy-tale style whereas Latin music manipulates the image
with red-color theme which reflects passion characteristic.

6. Limitation
One major limitation of the proposed method is color

and contrast shift changes when performing image manip-
ulation with a sound which is not included in the domain
of the pre-trained StyleGAN (see Fig. 10). Additionally, we
need more sound types to conclude that the representation
of audio embeddings are better than text.

7. Conclusion
We propose a method to manipulate images based on the

semantic-level understanding from the given audio input.
We take the user-provided audio input into the latent space
of StyleGAN2 [23] and the CLIP [37] embedding space.
Then, the latent code is aligned with the audio to enable
meaningful image manipulation while reflecting the con-
text from the audio. Our model produces responsive ma-
nipulations based on various audio inputs. We observe that
an audio input can successfully provide a semantic cue to
manipulate images accordingly. Our method of traversing
multi-modal embedding space can be used in many appli-
cations with multi-modal contexts.
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