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Figure 1. Scenariot is a method for discovering and localizing IoT devices with a SLAM-based AR device. We register the discovered devices spatially
in the AR scene to enable new spatial aware interactions.

ABSTRACT
The emerging simultaneous localizing and mapping (SLAM)
based tracking technique allows the mobile AR device spatial
awareness of the physical world. Still, smart things are not
fully supported with the spatial awareness in AR. Therefore,
we present Scenariot, a method that enables instant discov-
ery and localization of the surrounding smart things while
also spatially registering them with a SLAM based mobile
AR system. By exploiting the spatial relationships between
mobile AR systems and smart things, Scenariot fosters in-situ
interactions with connected devices. We embed Ultra-Wide
Band (UWB) RF units into the AR device and the controllers
of the smart things, which allows for measuring the distances
between them. With a one-time initial calibration, users local-
ize multiple IoT devices and map them within the AR scenes.

*School of Electrical and Computer Engineering (by courtesy)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 ACM. ISBN 978-1-4503-5620-6/18/04. . . $15.00

DOI: https://doi.org/10.1145/3173574.3173793

Through a series of experiments and evaluations, we validate
the localization accuracy as well as the performance of the
enabled spatial aware interactions. Further, we demonstrate
various use cases through Scenariot.
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INTRODUCTION
The ecology of connected smart devices is being rapidly in-
terwoven with people’s daily lives and work environments.
People envision that their surrounding physical world will
largely be enhanced with ubiquitous computing [31]. How-
ever, accessing and interacting with the Internet of Things
(IoT) remains challenging due to the increasing diversity and
complexity of the connected devices [6]. Traditionally, the
digital interfaces of the interactive devices have been realized
with a self-equipped touch screen display which has a limited
adaptability. But now, contemporary IoT devices allow users
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to access full functionalities remotely by using an offloaded
interface on a smartphone. Still, in order to discover and
access the devices, users need to browse through a specific
webpage on-line or search for the corresponding applications.
To alleviate the cumbersome processes, we leverage the spa-
tial information of the devices relative to the environment and
propose a physical browsing approach with AR.

As a novel interface which bridges the real and the digital,
Augmented Reality (AR) has become a promising surrogate
for interacting with the proliferating smart things [22, 26, 28,
39]. By superimposing the graphical digital interfaces on
the physical world, users are exposed to the functionalities
of the devices together with their physical affordance. This
way, users are able to directly and intuitively access the smart
environment. Moreover, the emerging visual SLAM technique
equips a mobile AR device with spatial awareness about the
surrounding environment.Thus further spatial references based
interaction metaphors can be realized in AR [17, 19, 25].

To this end, the key part of interacting with the smart environ-
ment in mobile AR is mapping of the smart objects globally,
i.e., knowing where the smart things are located in the AR
scene. Simple scene augmentation has been achieved by de-
tecting the objects in the view of a camera. More recent works
have shown progresses in multi-view object detection [32] and
pose estimation [38] during consecutive movements of the
camera. But, computer vision approaches largely rely on keep-
ing the object of interest in the camera’s view locally, which
implies that users are aware of the identities and locations of
the devices ahead.

In contrast, we primarily aim at enabling AR interactions with
the surrounding smart environment as a whole ecology. This
requires discovering and localizing the smart things globally
without prior location information of the devices. Wireless
techniques such as Bluetooth, Zigbee, and WiFi allow for
automatic discovery of the connected devices in an area net-
work. Yet, a received signal strength indication (RSSI) based
localization with the above technology suffers from low ac-
curacy (from only a few meters) [1]. An accurate alternative
utilizing Ultra-wide Bandwidth (UWB) based RF technology
has been advanced and made accessible recently. Therefore,
we develop a distance based localization method which inte-
grates UWB with SLAM to achieve quick mapping of smart
devices spatially in the AR scene.

We present Scenariot (Figure 1), an AR system which provides
fast estimation of the 3D locations of smart things and exploits
the spatial relationships for location aware interactions. To
achieve this, we equip the IoT controllers and the AR device
with distance measurement units. The user carries the dis-
tant sensing capable AR device and surveys the surrounding
environment while moving. We develop a distance based local-
ization algorithm to estimate the positions of the IoT devices.
By mapping the IoT devices into the coordinate system of
the AR environment, Scenariot enables spatial context aware
interactions instantly, including distant pointing, proximity
based control, and visual navigation. In our current prototype,
Scenariot supports a single user to map up to 10 IoT devices

which are distributed in a room (∼ 10×10m) with an accuracy
of ∼ 0.4m. Following is a list of the contributions:

• An approach to estimating the 3D locations of distributed
smart things using a SLAM based AR device;

• Implementation and evaluation of hardware and software
systems allowing users to rapidly map the smart things and
interact with them in AR scenes; and

• A wide range of example applications demonstrating the
usage of the proposed localization method and the enabled
interaction metaphors.

RELATED WORK

Context Awareness of Ubiquitous Computing Devices
Moderate pervasive computing devices such as mobiles and
wearables, are able to discover the smart things connected to
the same network and retrieve the corresponding interfaces
effortlessly. Enabling context awareness of the surrounding
smart environments on mobile devices has been the focus of
ubiquitous computing community [17]. Researchers attempted
to identify and select smart devices through a touching or a
close proximity interaction [36], which means that the user
needs to either physically contact or be present in close prox-
imity (within 1m) to the target. Early works incorporated
short-range RFID readers [45] or near field communication
(NFC) chip [36] in mobile devices to link with a smart device.
Recently, through leveraging the electromagnetic (EM) emis-
sions from the smart devices, researchers have investigated
using machine learning to recognize the EM signatures [24,
47, 44] without instrumenting the devices. To achieve se-
lecting the device at a distance, various technical approaches
have been considered including ultra-high frequency (UHF)
RFID [42], infrared targeting [10], visible light sensing [39],
magnetic sensing [48], visual fiducial tags [22, 20], and visual
natural features [12]. To this extent, previous efforts primarily
focused on local interaction with a device with prior knowl-
edge of where it is located in the environment. The spatial
knowledge about the smart devices played an important role
in context awareness [9, 17, 25, 35]. Here, we emphasize
the discovery of the devices’ absolute positions in a smart
environment using a wireless localization method. We bring
location awareness to the smart devices and enable mobile
spatial interactions within an AR scene.

Interacting with Smart Environment in AR
Recent works have shown great interests in leveraging mobile
AR technology to interact with the smart environment [22, 26,
28, 39, 40]. In these works, the spatial relationship between
the AR device and the smart device remains local, which
means the augmentation only applies on specific devices in
the instant view. Yet, the awareness of the surrounding en-
vironment as a whole ecology in AR requires mapping the
devices using their 3D locations. The SLAM based tracking
technique, which brings the AR device awareness about the
physical environment, has significantly matured in past years
and has started to appear on commercialized product [4, 18,
29, 46]. However, the SLAM map itself has no semantic in-
formation. Recent researches have shown progress in object
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detection [32] and pose estimation [38] working with visual
SLAM. But it is still challenging to discover the 3D locations
of all smart devices scattered in a cluttered scene by only using
computer vision. Therefore, we propose the use of a wireless
localization technique together with SLAM, which requires
no prior knowledge of the smart environment, to estimate the
absolute positions of the smart devices instantly.

Wireless Localization and Mapping Technique
The wireless localization and mapping problem, especially
in indoor environment, has been studied extensively [1]. We
primarily consider the infrastructure-free localization tech-
niques since we aim at instantly estimating the locations of
the devices. We draw inspiration from the concept of wireless
sensor network (WSN) localization which estimates nodes’
positions as the smart devices naturally form a network. A
common solution which deals with indoor environment is
a distance-based localization method which derives the co-
ordinates by measuring the distances across the nodes [2].
For examples, Multidimensional Scaling (MDS) and its vari-
ations are widely used distance based methods [7, 11]. Re-
cent developed UWB technology which provides an accurate
distance measurement(∼ 0.1m) leads to a highly accurate lo-
calization [15]. However, these approaches usually consider
only stationary nodes. Hahnel et.al. proposed an idea using
a mobile robot which was equipped with UHF RFID reader
and two antennas to survey an environment and localize the
RFID tags placed in the environment [21]. We merge this
surveying idea into the WSN localization solutions. We lever-
age the mobility of our mobile AR device to survey the smart
environment. With the SLAM capability from the AR device,
we generate an arbitrary number of nodes whose positions
are known and collect the distance measurements along the
surveying path. We develop an adapted MDS algorithm to
estimate the locations of the smart devices.

SCENARIOT
We embed UWB units on IoT controllers and mobile AR
devices. The distributed smart devices in the surrounding en-
vironment together with the AR device form a UWB network
as shown in Figure 2. Unlike the conventional localization
in wireless sensor networks where all nodes are stationary,
we incorporate a dynamically moving node (the mobile AR
device), along with a group of stationary nodes (distributed
smart things). We are interested in finding the positions of
the stationary nodes relative to the dynamic one. Due to the
visual SLAM built in the mobile AR device which creates
and updates a global map of the surrounding environment, the
dynamic node is capable of real-time self-localizing on the
map. We leverage the mobility and treat the dynamic node as
a mobile surveying platform. Along the moving path of the
dynamic node, we collect the distance measurements between
dynamic node and each of the stationary nodes together with
the positions at every measuring instance. We then employ the
MDS technique and derive the 3D coordinates of the nodes in
the coordinate system of the built SLAM map. Note that, in
order to achieve 3D localization, we require 3D movements
instead of planar ones from the dynamic node.

Figure 2. Scenariot localization principle.

To this end, we discover and map the smart devices spatially in
the AR scenes. It is worth noting that, the surveying movement
only needs to be conducted once for an unknown environment.
We store the 3D locations of the devices as well as the created
SLAM map of the scene so that when users revisit the same
region, the spatial registration is retained as long as the smart
devices remain at the same locations and the environment
has not changed much. We can render an AR scene with the
digital representation of the smart devices superimposed at the
physical objects’ locations instantly. By exploiting the spatial
relationship between the user and the connected devices, e.g.,
distance, orientation, and movement, we further enable context
aware in situ AR interactions.

Reviewing MDS Localization Principles
We first describe a traditional localization problem in a wire-
less network solved with MDS. MDS is a general technique
which recovers the coordinates of a collection of nodes by
minimizing the mismatch between the measured distances and
the distances calculated from the estimated coordinates [16].
Consider that we have N nodes to be localized in a fully con-
nected network, in which the the Euclidean distance matrix
across all N nodes is complete. We denote the coordinates
as X = [x1, . . . ,xN ]

T ∈ RN×3. The MDS algorithm estimates
the relative coordinates of the nodes by minimizing the stress
function S(X):

min
X

S(X) = min
X ∑

i≤ j≤N
ωi j(d̂i j−di j(X))2, (1)

where d̂i j is the distance measurement, di j = ‖xi−x j‖, and the
weight ωi j is defined based on the quality of the measurements.
We denote a weight matrix W with the size of N× N which
includes ωi j as an element.

To solve this optimizing problem, an iterative method called
"Scaling by MAjorizing a COmplicated function" (SMACOF)
has been widely used with high guarantees and speeds of
convergence [13]. We introduce a majorizing function as
T(X,Z)≥ S(X) which bounds S from the above and touches
the surface of S at Z ∈ RN×3:

S(X)≤ T(X,Z) =C+ tr(XT VX)−2tr(XT B(Z)Z) (2)
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where the matrix element of V and B(Z) are defined as fol-
lows:

vi j =


∑

k=1,k, j
−ωk j i f i , j,

∑
k=1,k, j

vk j i f i = j,

bi j =


∑

k=1,k, j
ωk j

d̂i j
di j(Z)

i f i , j,

∑
k=1,k, j

−bk j i f i = j,

T(X,Z) is a quadratic and thus convex function [13]. Further,
we compute the minimum of the function as:

X = min
X

T(X,Z) = V−1B(Z)Z (3)

The SMACOF as summarized in Algorithm 1 [16], iteratively
minimizes the majorizing function T(X,Z). After solving the
MDS localization using SMACOF, we obtain the relative co-
ordinates of the nodes. However, the absolute positions of
the nodes are lost when we rely only on the distance informa-
tion. In order to recover the absolute positions fully, a set of
at least 4 non-coplanar nodes (anchors) need to be localized
a priori [16]. One common way to estimate the rigid body
transformation, i.e., rotation-translation, between estimated
coordinates of the anchors and the actual coordinates is by
conducting a Procrustes Analysis [16].

Algorithm 1 SMACOF

1: procedure SMACOF(X(0),W)
2: calculate S(X0)
3: while δ ≥ ε do
4: Z = Xk−1

5: Xk←min
X

T(X,Z)

6: δ = S(Xk−1)−S(Xk)

7: return Xk

SMACOF with Mobile "Anchors"
Our problem formulation differs from the above traditional
approach with in three ways: (i) our network incorporates sta-
tionary nodes and a dynamic node, namely the smart devices
and the mobile AR device; (ii) no prior location information on
the stationary nodes is available, i.e., no physical anchors avail-
able from infrastructure; (iii) we are interested in recovering
the absolute positions of the stationary nodes using location
information of the AR device in the SLAM map. We have n
stationary nodes in the network to be localized and m measure-
ment instances which can be sampled during the surveying
using the dynamic node. We tackle these problems as follows.

• Due to the self-localizing capability of the dynamic node,
we remove the dynamic node, meanwhile insert a group
of mobile "anchors" with known positions over a period
of time to the network. We reinterpret this problem as a
localization problem in a fully connected network with a
total number of N = n+m stationary nodes: Given the
positions of the m nodes and the full Euclidean distance
matrix, we localize the unknown positions of n nodes.

• Leveraging the mobility of the AR device, we can intro-
duce an arbitrary number (m≥ 4) of "anchors" with diverse
configuration into the network. Basically, we eliminate the
requirement for the fixed and previously localized physical
anchors by incorporating a self-localizing dynamic node.

• A straightforward way of estimating the absolute positions
is performing a full SMACOF in N dimension followed
by a Procrustes Analysis with the anchors. However, we
observed two coupled drawbacks: (a) the distances across m
anchors should not contribute to the stress function; (b) the
search space in SMACOF increases from a dimension of
Rn×3 to RN×3 unnecessarily. We incorporate the idea of
partitioning [14] to resolve these issues.

We now explain the specifics of the modified SMACOF. We
separate the set of nodes into "unknown" (Xu) and "anchors"
(Xa) partitions:

X =

[
Xa
Xu

]
, Z =

[
Za
Zu

]
,

with,

Xa = [x1, · · · ,xn]
T ∈ Rn×3

Xu = [xn+1, · · · ,xn +m]T ∈ Rm×3

Za = [Z1, · · · ,Zn]
T ∈ Rn×3

Zu = [Zn+1, · · · ,Zn +m]T ∈ Rm×3

Similarly, we partition the weight matrix W, as follows:

W =

[
W11 W12
W21 W22.

]
,

where block matrices W11 is of size n× n, W12 = WT
21 is

n× m, W22 is m× m. While W11 refers to weights of dis-
tances across Xu which are only measured once at first, W12
refers to the significance of the measurement instances be-
tween Xu and Xa. Thus, we set elements in W11 as 1, and
W12 as a larger number (e.g., 5). We then simplify S(X)
by reducing W22 to 0 because distances among the anchors
contribute nothing to the stress, followed by updating V and
B(Z) accordingly. In the same way, we partition the auxil-
iary matrices V and B into block matrices. Further, we derive
the partitioned T(X,Z), and differentiate it to solve the mini-
mum of T(X,Z) [14]. Now we only account the nodes with
unknown positions in the optimization procedure:

Xu = V−1
22 (B22Zu +BT

12Za−VT
12Xa). (4)

We revise the Algorithm 1 with Eq. 4. In addition, we lower the
computation complexity by splitting the matrices and reducing
the dimensions. This is important for us, because (i) we need to
deploy the algorithm on mobile devices; (ii) in our formulation,
the number of the mobile anchors (m) can be arbitrarily large.
Moreover, this way allows us to estimate the absolute positions
in a single step manner by incorporating the anchors’ absolute
positions directly in the SMACOF procedure.

IMPLEMENTATION
Our prototype is composed of IoT controller modules, AR
devices, firmware running on the microcontrollers (MCUs),
and applications installed on the AR device. The AR device
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Figure 3. Overview of the Scenariot hardware. Deploy IoT controller
boards (right) to IoT devices and AR device (left).

works as a host to handle the localization algorithm and inter-
face with IoT devices. As shown in Figure 3, IoT controllers
are deployed to smart things as well as to the AR device. All
of the devices connect to a network through WiFi. Moreover,
each IoT device is capable of measuring distances to the oth-
ers. Note that we use off-the-shelf components and design the
hardware as a development board for prototyping purposes.
We believe the package size can be greatly improved after iter-
ation. We developed the firmware and the mobile application
with reliability as our primary goal at this stage. Thus, there is
a lot of room for improvement in the efficiency.

Hardware
As shown in Figure 3, the overall size of the board is
100mm× 100mm× 20mm with the units installed in posi-
tion. This board is designed to process distance measure-
ments, deliver basic IoT functions, such as collecting sensor
data and control appliances, and connecting with the smart
environment network and the AR device over WiFi. The
main MCU (Teensy 3.6) communicates with the DecaWave
DWM1000 UWB module using SPI bus. Further it handles the
WiFi communication by connecting a ESP8266 WiFi module
(NodeMCU E12) via UART. The board also incorporates a
set of general docking ports to interface with different IoT
components such as sensors, and power relays. The board
provides both 5V (1A max output) and 3.3V (1A max out-
put) output from a rechargeable Li-ion battery (9V, 600mAh)
using a dual regulator set. The battery lasts for ∼ 1.5 hours
with a continuous two-way WiFi communication and a UWB
ranging. Our localization method works on mobile devices
supporting a SLAM based AR environment. For our proto-
type, we adopted ZenFone AR (ZS571KL, SnapdragoTM 821
processor, AdrenoTM 530 processor, 6GB RAM) which is em-
bedded with Google Tango technology [4]. We attach one of
the self-contained boards on the back of the phone. Together,
they serve as the dynamic node in the wireless network.

Firmware
The firmware for the MCU is developed with the Teensyduino
library and runs on an ARM Cortex-M4 chip (CPU speed
180MHz) that comes with the Teensy 3.6 board. The firmware
mainly accomplishes the following tasks: (i) ranging to all
available modules; (ii) connecting to a local area network
through the WiFi module; (iii) communicating with the host

AR device regarding localization and IoT function related mes-
saging. Each MCU runs asynchronously with a tick function
called from its own main loop and updates its state machine
locally according to the tasks. We run a simple parsing and
forwarding code on the NodeMCU chip after shaking hands
with the main MCU. We support transmitting the distance data
using User Datagram Protocol (UDP) via WiFi for high speed.
We also support Transmission Control Protocol (TCP) if any
IoT functionality requires large a file transmission.

Distance Measurements
We employ an asymmetrical double-sided two-way ranging
scheme for time-of-flight ranging measurements between the
IoT controller modules. This scheme is well known for cor-
recting clock drift by exchanging two round-trip messages[23].
Although this approach is simple to implement, it works best
for a small number of devices because it involves time-division
multiplexing to range with multiple devices. We tune the tick
timer in a conservative manner, which leads to an approximate
upper bound of update rate 1000/(80+21n)Hz for perform-
ing a one to n ranging. For our current prototype, we reach a
ranging rate of ∼ 3.7Hz when localizing a total number of 8
IoT devices at the same time. In this extreme condition, this
update rate still allows users to move at a normal pace (∼ 1m/s)
without introducing many ranging errors.

Localization within AR
Our proposed localization method requires two groups of dis-
tance measurements: constant distances across all n station-
ary nodes, and continuous measurements from the dynamic
node to the stationary nodes. We first poll a total number
of n(n−1)/2 distance measurements across the IoT devices
alternatively. Specifically, we perform n− 1 times one to i
ranging, where i ∈ {1, · · · ,n−1}. Then, during the surveying
movements, the IoT module attached on the AR device col-
lects the measurement instances and updates to the AR device
using UDP. On Zenfone, the acquisition of the device position
in the SLAM map is provide by the Google Tango API. We
collect the position of the device when receiving a valid mea-
surement instance. When the surveying ends, we launch the
adapted SMACOF algorithm in a separate thread. Then after
the algorithm terminates, we store the 3D location informa-
tion of each connected device. For run time applications, we
implement the proposed method on Zenfone. We developed
the application within Unity3D [41] using C#. We employ an
open source C# library Math.NET Numerics [33] to perform
matrix calculations. To balance the computation resources and
the localization accuracy, we empirically choose the number
of samples from the surveying to be 100, the maximum itera-
tion limit in SMACOF to be 500, and ε = 1e−12. This way,
users spend less than 30s on the surveying. And running 500
iterations with 100 samples takes ≤ 10s to finish.

TECHNICAL EVALUATION
To analyze the performance of our localization method in
terms of accuracy, we chose to evaluate our method under
several possible surveying conditions. We illustrate the setup
in Figure 4. We divided the surveying conditions into two lev-
els. The primary conditions including surveying distance (r),
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Figure 4. Technical evaluation setup.

i.e., the distance from the center of the surveying space to the
devices to be located, and the number of devices (n) to be lo-
cated, The secondary conditions included the surveying space,
number of samples (m) collected in surveying, etc. We defined
the surveying space using the axes (x,y,z) aligned bounding
box (l×w×h) of the sample points, which is centered at the
origin. Note, the origin of the SLAM map coordinate system
was located at the point where the application launched. We
launched the application with the phone being placed at a fix-
ated location with a height of 1.5m (comparable to height of
human body) above the floor.

In order to collect the data in a systematic manner, we de-
cided to vary the primary conditions and fixate the secondary
conditions when collecting the data. As shown in Figure 4,
we conducted 9 surveyings to collect the surveying data with
r ∈ {2,3,5}m and n ∈ {1,2,4}. For each surveying, we cov-
ered a sufficiently large survey space (3× 3× 2m) and col-
lected 3000 samples. To achieve a uniform sampling as much
as possible, we held the device at different heights and walked
within the surveying region with different directions. Since
the AR device is equipped with a depth camera, we manually
tagged the center of the IoT module as ground truth locations.
We recorded the position of the IoT modules relative to the
instant AR device location and transformed it to the SLAM
map coordinate system.

We first studied the effect of the secondary surveying con-
ditions on the accuracy, by fixating the primary conditions.
Based on the findings of the secondary conditions, we then
evaluated the primary conditions and, designed studies with
the suggested secondary conditions. For each studying test,
we subsampled the dataset based on different conditions and
fed the drawn samples to the localization algorithm. For eval-
uation purposes, we implemented the same algorithm with
MATLAB and ran the algorithm on a desktop with a config-
uration of ε = 1e− 12 and 500 maximum iterations. for all
the experiments in this section. We used Root Mean Square
Error (RMSE) between the localization results and the ground
truth positions to indicate the accuracy.

Sampling Space
In order to gauge out the effect of the sampling space over
the localization accuracy, we first assumed l = w = h, i.e., the
surveying happening in a cube. We indicated the worst primary
conditions as r = 5m, and n = 4, and the secondary condition
as (m = 100). We varied l = w = h = 1,1.2,1.4,1.6,1.8,2m
to study the effect of the surveying space size on the accuracy
of the localization. Then we randomly subsampled m points
within the surveying space (l×w×h) from the overall dataset.

Figure 5. Effect of sampling space on the localization accuracy:
(left)assume a cubic volume, (right) varying h and set l = w = 1.6(m).

We repeated the subsampling and localization 100 times for
each of the variations. Then we took the average error of
all 4 devices for the analysis. Last, we conducted a one-
way univariate ANOVA and post hoc pairwise comparisons
with Bonferroni correction. Overall, we found a significant
difference across different survey space sizes (p < 0.05). Yet,
within the set of {1.6,1.8,2}m, no significant difference was
found (p > 0.05). As shown in Figure 6 (left), the mean error
for {1.6,1.8,2} was less than 0.5m which was less than 10%
of the sampling distance r = 5m.

Second, reaching up to a large height limit involves an awk-
ward motion. Taking into account a practical range of the
arm motion without extra effort, we studied the effect of
h on the accuracy with fixed l and w. Here, we varied
h = 0.8,1.0,1.2,1.4,1.6m while fixating l = w = 1.6m. Other
conditions remained the same as the first part. With the
ANOVA test result, we found that there were significant dif-
ferences across different height ranges, yet there were no
significant differences across each other within the set of
{1.2,1.4,1.6}m. From Figure 5 (right), we observed a mean
error of 0.4m (SD = 0.1m) with a height range of 1.2m. To
reach the range limit, an adult needs to fully stretch his/her
arm up and down. On the other hand, even if there existed
a degradation when h ≤ 1m, we still observed a mean error
≤ 0.6m given the 5m sampling distance.

Sampling Number
We design the experiments in a similar way to the sampling
space. We chose the primary condition as r = 5m, and n = 4,
and the secondary condition as l = w = h = 1.6m, and vary the
sampling numbers (m = 20,50,100,200,300) on the accuracy.
From a one-way univariate ANOVA and post hoc pairwise
comparisons, we concluded among m = 100,200,300 that
there was no significant difference (p > 0.05), yet m = 20,50
both showed significant differences with m = 100,200,300.
From a computation efficiency point of view, we suggested a
surveying with 100 sampling points.

Sampling Distance and Number of Devices
Based on studies on the secondary conditions, we set l =
w = h = 1.6m and m = 100 to study the effect of sampling
distance r and number of devices n. We designed this study
with variations of r = 2,3,5m and n = 1,2,4. We calculated
the average errors for the conditions with n > 1 and used them
for the tests. We conducted a two-way univariate ANOVA
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Figure 6. Effect of sampling Number (m) on the localization accuracy.

followed by post hoc pairwise comparisons. Overall, the
ANOVA results indicated that both r and n were statistically
significant (p < 0.05) over the accuracy. By examining the
pairwise comparisons, we found out n = 2 and n = 4 showed
no significant difference (p > 0.05) and that both of them were
significantly different from n = 1. As shown in Figure 7, with
the condition of r = 5m, n = 2 and n = 4 presented a larger
error (> 0.3m). We observed that there was no significant
difference between r = 2m and r = 3m, yet r = 5m yielded
a significant difference from the others. From the figure, we
confirmed that the mean errors of localizations at r = 5m
increased but still remained < 0.4m.

Guidelines
From the study results, we summarized the following prelim-
inary guidelines on utilizing the localization: (i) the survey-
ing space should be sufficiently large (l ≥ 1.6m, w ≥ 1.6m,
h≥ 1.2m); (ii) enough data should be sampled during survey-
ing (m≥ 100); (iii) localization of multiple devices is feasible
but likely to introduce more errors; (iv) the localization er-
ror increases as the IoT devices are located further from the
survey region; (v)within a room of normal size(< 10×10m),
surveying at the center of the room should localize the scat-
tered devices with an average error at the level of 0.4m or less.
With these guidelines, we further designed task evaluations
and demonstration applications to verify our proposed method.
Note that this technical evaluation was conducted with lim-
ited resources and so maybe less conclusive. This is why we
suggest these guidelines conservatively.

Further, with the relative spatial relationships between the user
and the IoT device, we extracted three basic spatial elements:
the orientation of users with respect to the IoT devices, the
direct distance measurement between a user and an IoT de-
vice, the approaching direction in which users walks. Based
on these three relationships, we design and implement two
location aware interactions, namely, distant pointing and prox-
imity based control [25, 36]. In Task Evaluation section, we
study the performance of these two widely accepted spatial
interactions with users using our localization method.

TASK EVALUATION
Through the task evaluation, we expected to: (i) verify the
localization performance with users in a realistic scene; (ii)
examine whether the localization performance meets the re-
quirements of the spatial interactions in AR. We deployed 8

Figure 7. Effect of sampling distances (r) and number of devices (n) on
the localization accuracy.

Figure 8. Task evaluation setup with 8 IoT devices in an office.

IoT controller modules onto 8 physical appliances in a clut-
tered office environment as illustrated in Figure 8. They were
distributed within a region with a footprint of ∼ 10× 8m at
various heights. We also kept the existing common furnitures
such as desks, shelves, and chairs in the testing area. Within
this setup environment, we tested the localization accuracy by
asking users to perform the surveying. After the surveying
and the localization, we asked users to conduct these interac-
tions. We then evaluated the performance in terms of targeting
accuracy and completion time.

We recruited 11 participants with an average age of 25 for our
study. Each user was asked to conduct a two-session study
regarding the distant pointing and proximity based control re-
spectively. Each session included 3 subtasks, where users first
performed surveying movements then acted the designated
interactions. Prior to the trial tests, we offered users a practice
session to familiarize them with the system. We gave users a
5 minutes break between each session.
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Localization Accuracy
For all 6 subtasks, users were asked to first perform surveying
movements around the center area of the setup environment.
We collected 6 sets of surveying movement trajectories and
runtime localization results from each user, which resulted
in 66 trials in total. After the surveying, the author manually
tagged the ground truth positions of each IoT module as in the
experiments in Technical Evaluation section. We displayed
4 progress bars on the screen to indicate the sampling num-
ber collected in the survey, as well as the expansion of the
surveying space on 3 axes (x,y,z). We asked users to reach a
minimum expansion of l = w = 1.6m, and h = 1.2m which
was suggested by the technical evaluations. We did not ask the
users to follow any specific trajectory as we tried to find out
possible performance degradations in the realistic scenarios.

Figure 9. Localization accuracy study with users. Runtime: runtime lo-
calization result. Height Correction: results with height correction. Dis-
tance: the distances of IoT devices to the center of the surveying space.

Result As shown in Figure 9, the average of the localization
error over all 8 devices yielded 0.41m (SD=0.24m). We ex-
pected this result based on the technical evaluation results. We
ran a one-way ANOVA to find out if the localization accuracy
was similar across different devices, and the result indicated
the existence of significant differences. Further a post hoc
pairwise test showed that the accuracies over Fan, TV, and PC
were significantly different from those of the others. The TV
and PC were placed at an extreme distance from the setup en-
vironment resulting in their being∼ 5m and 4m away from the
surveying region. As the distance increases, the localization
performance may go down. Although the Fan was placed near
the center (∼ 2m), we deliberately left it on the floor under
a desk. We suspect that the possible occlusion caused by the
placement affected the localization performance.

We recalled that in the technical evaluations, the 100 samples
were uniformly subsampled from the dataset. However, in
real trials, we observed that users tended not to move much
on the z axis. Sometimes if most of the sampled points lay
approximately on a plane (horizontal), the flip ambiguity be-
came more severe [5]. We inspected the collected data and
found that flipping about an approximately horizontal plane
happened occasionally which introduced an error on the z axis
mainly. We observed that the average localization error on
z (0.32m) was larger than on the other two axes (0.13, 0.15m).

Figure 10. Distant pointing accuracy and completion time.

Here, we implemented a heuristic leveraging some meta in-
formation about the devices to compensate the error caused
by flipping. We dissected 3 height levels with respect to the
floor, namely, lower (0≤ z≤ 1m), middle (1 < z≤ 2m), and
upper (z > 2m). We designated the IoT devices in this way:
lower (Fan), middle (Humidifer, 3D Printer, Printer, and PC),
and upper (Light, Thermostat, and TV). Compared with the
runtime results in Figure 9, the overall average error decreased
to 0.36m (SD = 0.19m). The T-Test showed that there was a
significant difference between the runtime result and the one
with the heuristic (p < 0.05) and thus indicated a decreasing
trend on the errors over all 8 IoT devices.

Distant Pointing
Distant pointing leverages the orientation of the AR camera
and detects if the object of interest is located in the center of
the view window. We placed a virtual spherical collider at the
location of the IoT module. Next, we dissected the spherical
colliders by diameters (d) into three groups: small (d = 0.5m),
medium (d = 1m), and large (d = 1.5m). Then we cate-
gorize the corresponding 8 physical devices based on their
physical sizes: the PC, and TV as large, the 3D Printer, and
Printer as medium, and the rest as small. We implemented a
pointing scheme which performs AABB collision tests with a
viewfinder frustum (8 degrees [3]) over the colliders.

Within each subtask, we generated a randomized sequence,
where each IoT device appeared twice in the sequence. We
randomly assigned the ground truth position or the runtime
localization result to the colliders. For each trial, user oriented
the device towards the objects sequentially one by one. We
suggested the users that they perform the distant pointing
around the center of the setup environment though we do not
limit their movements. We asked the user to place the whole
physical device at the center of the view as we applied an
offset to compensate for the deployment displacement. We
counted a device as being triggered if user pointed to the
correct device within 10s and dwelled for over 1s. We counted
a negative trigger if during the dwelling time, any other device
mis-triggered as well. After each trial, we asked the user to
fully disengage with all of the objects and point to some empty
space as shown in Figure 8. In total, we collected 8× 2× 3
distant pointing trials from each user, which resulted in 528
trials across all users.
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Figure 11. Proximity based control accuracy and completion time.

Result As shown in Figure 10, we observed an average of
0.99 pointing accuracy with ground truth. We achieved an
average of 0.93 accuracy with runtime result, within which
the Fan, Humidifier, and Thermostat had an accuracy less than
0.9. Compared to the localization accuracy shown in Figure 9,
we suspect that the accuracy degradation was not just caused
by the localization accuracy. We conjectured some potential
reasons without verification: awkward installment positions,
extra cognitive load from the cluttered scene, and selection
ambiguities. For examples, the Fan was placed on the floor
and the Thermostat was hanging around the ceiling, and the
white Humidifier was hidden in a cluttered scene. In terms of
completion time, we only counted the successful trials, and a
T-Test showed there was no significant difference (p > 0.05).

Proximity based Control
Based on the proximic control framework proposed in a previ-
ous paper [25], we used three spatial elements for a proximity
based interaction: orientation, distance, and approaching di-
rection. The triggering conditions included facing towards,
approaching towards and reaching into the proximity region
of the hinted IoT device. The trial procedure was similar to
that of Distant Pointing. We set a timeout limit of 15s, and we
asked the users to return to approximately the same position
to disengage from all of the objects.

Result The analysis showed an overall triggering accuracy
of 0.92 with ground truth while 0.87 with runtime result.
The ground truth accuracy suggested that we need to im-
prove the interaction scheme. A paired T-Test on the accu-
racy between these two conditions indicated no significant
difference(p > 0.05). The accuracy with the results on both
the Fan and the Humidifier were worse than others (< 0.8). We
observed that users had unnatural motions, including bending
towards the Fan and detouring before approaching the Hu-
midifier. Therefore, we need to adjust the interaction design
according to the possible obstacles in the way of the target and
the height of the object located. For the completion time, the
T-Test showed no significant difference between the ground
truth and the runtime conditions (p > 0.05).

EXAMPLE USE CASES
Based on the localization result, we register the IoT devices
spatially in the AR scene which empowers the IoT devices to
have the spatial awareness of the physical world. We foresee

Figure 12. Discoverable World. The digital representations of the discov-
ered IoT devices are visualized within the AR scene with spatial PiPs.

good potential of flexibility and applicability using Scenariot.
Here we selectively deployed Scenariot in 4 use cases.

Discoverable World
When a user enters a new environment, the AR device broad-
casts a discovery message to the network then all connected
devices send an acknowledgement and register with their iden-
tities. After the user localizes the IoT devices, the digital
interfaces will be relocated to the discovered 3D positions.
Users can simply browse the digitally enhanced world within
the augmented scene. Inspired by previous works [19, 27], we
further deliver a spatial aware picture-in-picture (PiP) effect.
As shown in Figure 1 and Figure 12, we not only visualize the
digital interfaces when the corresponding physical object is lo-
cated inside the view, but also the ones outside. To achieve this
effect, we parameterize the outside view space using spherical
coordinates and shift the outside locations to the peripheral
region of the view frustum. This way, we preserve the spatial
information of the outside view devices.

Proximity based Control
This interaction scheme has been studied in the Task Evalua-
tion section also. We here demonstrate Scenariot being used
for fabrication machine inspections as shown in Figure 13.
Users approach the machine to examine the status or operate
it through the AR interface. As users move closer to the tar-
get, the digital interface adjusts according to the distances for
different levels of engagement [25].

Figure 13. Proximity based Control. While users move closer to the
machine (a, b, c), the level of engagement is adjusted accordingly.

Monitoring Assets and Navigation
By attaching our IoT module to assets, we store the 3D loca-
tions of the assets together with the map created by the AR
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Figure 14. Monitoring the IoT assets (a, b) and navigating the user to-
wards the assets by visualizing the direction on the screen(c, d).

device for later revisit usages as in Figure 14 (a). When the
user reenter one of the discovered scenes, we check the dis-
tance measurements across the IoT devices and/or between the
IoT device and the AR device. If they do not match with the
calculations based on the last location records, we consider
the IoT devices as having shifted from their original locations.
We provide suggestions for the user to conduct a new survey-
ing(Figure 14 (b)). After the new locations are discovered, we
navigate users towards the new position by showing them an
direction indicator on the AR device (Figure 14 (c, d)).

Miniature World
We consider another spatially aware interaction scheme for
remote interaction with IoT devices, namely a miniature
world [8]. With the depth camera equipped with Zenfone,
we allow users to scan and reconstruct the mesh model of
the surrounding environment. We can combine the surveying
stage with scanning movements. With the discovered 3D loca-
tion of the IoT devices, we superimpose the digital interfaces
onto the virtual models. To this end, we develop an IoT-device-
enhanced miniature world. Users can further interact with the
miniature world to control the physical world.

Figure 15. User creates a miniature world of the physical environment
enhanced by the digital interfaces of IoT devices.

LIMITATION
Number of IoT Devices One essential bottleneck is the sam-
pling rate of the distance sensing. With the current conser-
vative parameters for 2-way ranging, we estimate the upper
bound can be around 10 (∼ 3.6Hz) given the assumption that
the user moves at a speed of ∼ 1m/s. We consider to employ
synchronized manner which only needs 1 message for distance
measurement to increase the sampling rate [1]. Without strict
proof, we expect to double the ranging frequency approxi-
mately as it requires only 1 round trip message instead of 2,

thus doubling the bound (e.g., 20). For an even larger network,
we need to localize the nodes patches by patches.

Multi-User The low update rate of UWB ranging also limits
our prototype to working with single user only. Directly using
the current implementation parallelly for a multi-user system
will reduce the update rate by a fraction of the number of users
(e.g. 1.85Hz for 2 users with 8 IoT). Instead, we plan to solve
the dynamic registration between two users so that we can
treat one user as host node, and other users as slave nodes.

Instrumenting To optimize the package in the future, we plan
to remove the breakout boards, redesign the PCB boards, and
replace the universal IoT interfaces with the desired interface
only. Moreover, it will be interesting to generalize our concept
of combining SLAM and UWB and replace the UWB with
matured RF based technology.

DISCUSSION AND FUTURE WORK
Improving Localization Algorithm Currently, we assume
a fully connected network, which means that the distances
across all devices are available. However, in larger scale,
this assumption may be invalid. In the future, we need to
further evaluate the effect of missing distance measurements
on the localization accuracy. For example, we can build a
ranging quality metric mechanism to adjust the parameters
(e.g., weights) during runtime. Further, heavy non-line-of-
sight (NLOS) situations such as crossing walls needs to be
identified and properly compensated [43] for a better accuracy.
Moreover, we developed a heuristic for the flip disambiguation,
yet we need a more general solution to resolve this problem [5].

Accuracy As the localization accuracies along x and y axes
were 0.13m and 0.15m, we can still identify two adjacent
devices if there are sufficient amount of differences along x
and y axes. Further, we can introduce a mechanism with the
users’ input to distinguish two closely placed objects.

Power Consumption Given a full working condition in the
localization phase with continuous transceiving, the whole
board (including MCU) peak current reaches 350mA which is
calculated based on the datasheet. It agrees with our reported
results: a 600mAh battery lasts for ∼ 1.5 hours which means
we can perform surveying (∼ 30s) about 180 times. After
localization, we keep DWM1000 in sleep mode (550nA) so
that the battery can last substantially.

Scalability The current centralized localization approach
may suffer high computation costs for a larger scale deploy-
ment (e.g.,factories). We are also considering implementing
our method in a distributed way for large scale adoption. Tech-
nically, visual SLAM and UWB should both work in outdoor
environment, yet for this paper, we only test in indoor environ-
ment. We would like to expand the study to outdoor setup in
the future. Moreover, in real use scenarios, we need to address
the heterogeneous interfaces with different IoT devices.

More Spatial Interaction Metaphors We envision advanced
inter-devices interactions can be realized with the given spa-
tial information. Currently, we support a single AR device
to localize multiple stationary devices. In the future, we will
consider to including multiple AR devices and dynamic IoT
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devices such as a service robot. Moreover, with the discovered
locations, we can form an infrastructure based tracking by op-
portunistically referring the IoT devices (more than three) as
anchors [34]. Further, we plan to incorporate multiple modali-
ties for interacting with the smart environment. For examples,
we can leverage the spatial relationships to provide both visual
and auditory augmentation [37], and context-awareness with
voice command [30].

Form factor of AR device For prototyping purposes, we use
Google Tango devices which are specially designed and em-
bedded with SLAM. Yet our localization method can be de-
ployed to any moderate smartphones/tablets which are com-
patible with third party SLAM based AR SDK (e.g., Wiki-
tude [46], ARCore [18], etc). Further, integrating Scenariot
with the emerging head mounted display based AR devices,
e.g., Hololens [29] is another alternative.

CONCLUSION
Our paper builds towards the broad goal of empowering users
with the ability to quickly discover and intuitively interact
with the connected smart things within the surrounding envi-
ronment. We propose Scenariot to discover and localize the
surrounding smart things as well as spatially register them
with a SLAM based mobile AR device. By leveraging the
spatial registration, in-situ AR interaction with the IoT devices
is enabled. Through our experiments and user studies, we
verified our method is capable of providing object level local-
ization accuracy ∼ 0.4m with multiple devices distributed in a
cluttered scene (∼ 10×10m). Therefore, we believe this work
can bring spatial awareness to the IoT devices within an AR
scene and further inspire advanced interaction designs.
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