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Figure 1: VibAware understands the contexts associated with tap and swipe gestures. We aim to support three interaction
contexts including Within-Hand, Surface, and Hand Grasp. VibAware employs sensing nodes at the wrist and finger which
capture active and passive signals accordingly. The components are small enough to be placed on the finger and the wrist.

ABSTRACT

The use of microgestures has improved the robustness and nat-
uralness of subtle hand interactions. However, the conventional
approach often neglects the context in which users perform micro-
gestures. We present VibAware, a context-aware tap and swipe ges-
ture recognition using bio-acoustic sensing. We use both active and
passive sensing approaches to recognize finger-based microgestures
while also recognizing the associated interaction contexts, including
Within-Hand, Surface, and Hand Grasp. We employ accelerometers
and an active acoustic transmitter to form a bio-acoustic system
with multiple bandpass filter processing. Through user studies,
we validate the accuracy of context-aware tap and swipe gesture
recognition. We propose a context-aware microgesture recognition
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pipeline to enable adaptive input controls for rich and affordable
hand interactions.
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1 INTRODUCTION

With the advancement in wearable sensing techniques, researchers
have explored a broad category of hand interactions, including
hand activity recognition [25], coarse-grained hand gesture [13,
19, 26], microgestures [24], and subtle finger interactions [23, 51,
52]. Particularly, micro hand gestures like tap and swipe using a
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single hand have been adopted for contemporary augmented and
virtual reality (AR/VR) interfaces to provide less distraction, reduced
fatigue, and improved privacy [27]. To this extent, on-body sensing
approaches promoting user comfort in a socially acceptable form
factor have been suggested for microgesture recognition [20, 33, 50].

Previously, various sensing approaches have shown the poten-
tial of microgesture recognition with robust performance [31, 63].
However, these works mainly focused on recognizing basic ges-
tures or discrete hand postures. Still, extra care must be taken to
recognize micro hand gestures under various contexts including
surfaces and hand grasps. This is because the hand gesture itself
cannot fully express the user’s intent, as the same gesture may
have different meanings depending on the situation. To further
expand the scope of interaction, Grasping Microgestures [45] intro-
duced subtle and rapid microgestures with busy hands. In addition,
researchers explored tapping and swiping gestures on different
interaction contexts, including rigid surfaces [12, 38] and within
the hand [8, 24]. To this end, recent work utilized a high-frequency
AC circuit with two inertial measurement units (IMUs) to support
within-hand/hand-to-surface/and hand-to-object interactions [28].
In our work, we mainly focus on recognizing microgestures ro-
bustly under different contexts. We further advance the sensing
capability by understanding the surrounding environment where
tap and swipe gestures occur (e.g., tap while grasping a pen, swipe
on a rigid desk).

To enable microgesture recognition, a wide variety of sensing
modalities has been considered in the form of wrist-worn and finger-
worn devices. The wrist and fingers have been of particular interest
since they convey user intent precisely with high flexibility and
social acceptability [40]. Previously explored sensing approaches
would include utilizing muscle activation [17], motion [31], com-
puter vision [60], and RF waveguide [65]. These sensing mecha-
nisms focus on either passive or active sensing methods for cap-
turing coarse-grained hand gestures or microgestures accordingly.
Instead, we take advantage of bio-acoustic, which can acquire both
active and passive acoustic signals. Active sensing is to use actively
emitting sound signals to analyze the responses & signal change
and passive sensing means analyzing signals transmitted through
bone conduction or skin propagation. For our proposed work, we
capture motion-induced low bandwidth (passive) and transducer-
generated broad bandwidth (active) bio-acoustic signals. It allows
us to acquire rich information from microgestures to recognize
discrete gestures and contexts associated with the gestures.

To this end, We propose VibAware, bio-acoustic sensing that
enables context-aware microgesture recognition through the use of
both active and passive bio-acoustic sensing. Our approach focused
on recognizing tap and swipe gestures while understanding their
interaction contexts of Within-Hand, Surface, and Hand Grasp. This
allows us to cover broader interaction scenarios even with the same
gestures. Moreover, our system reduces instrumentation within
the hand region by placing a single receiver on the thumb while
locating a receiver and a transmitter on the wrist (Figure 1). We
further quantify the accuracy of performing tap and swipe gestures
in different contexts and demonstrate exemplary cross-context
interactions for AR and grasp interfaces. Our contributions are as
follows:
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o A bio-acoustic sensing technique utilizing active and passive
signals to recognize robust tap and swipe gestures;

e A context-aware gesture recognition pipeline for classifica-
tion of associated contexts (Within-Hand, Surface, and Hand
Grasp) with microgestures;

e Exploration of bio-acoustic hardware configuration to un-
derstand deeper interaction contexts with minimal instru-
mentation within a hand and wrist;

2 RELATED WORK
2.1 Hand Interaction with Wearables

Wearable sensing techniques have been employed to support natu-
ral hand interactions by recognizing hand activities and gestures [21].
The emergence of AR/VR devices facilitates the use of wearable
sensing techniques for input control [42]. Among various body
parts, the wrist and fingers have been preferred to employ wearable
sensors with less obtrusiveness and availability of rich and direct
sensing signals from hand gestures.

2.1.1  Wrist-worn Wearables. Wrist-worn sensing approaches have
been explored to recognize hand gestures and reconstruct hand
posture by utilizing Surface Electromyography (SEMG) [32], electri-
cal impedance tomography (EIT) [64], computer vision [60], pres-
sure [9], capacitive [41], IMU [31, 56], and acoustic sensing [12, 19].
To further augment the performance of the recognition task, previ-
ous works combined distinctive sensing modalities. For instance,
EmPress [30] combined sEMG and pressure sensing modalities to
improve the accuracy of hand gesture recognition. On the other
hand, TapID [31] added additional accelerometers to the existing
smartwatch form factor to provide reliable and quick touch detec-
tion for the VR input. Recent works utilized off-the-shelf smart-
watches to robustly recognize finger gesture [56], hand activity [25],
and customized hand gestures with a few-shot learning [58].

2.1.2  Finger-worn Wearables. Finger-worn wearable systems have
been populated for detecting fine-grained hand gestures. These
include fine-grained finger tracking with microphone [34], micro-
finger poses with proximity sensors [51], hand poses with acoustic
sensing [63], and subtle pinch and touch detection by coupling AC
signal to the body [23, 28]. Additionally, Magnetic sensing [39, 61]
and computer vision [7] approaches have been investigated. Fur-
thermore, the finger-worn wearable devices robustly supported tap
interactions with various surfaces [14, 52]. For robust and effective
hand interaction, previous works focused on achieving highly ac-
curate recognition for coarse- and fine-grained hand gestures. Our
approach extends the capabilities of hand interactions by develop-
ing both wrist- & finger-worn system, as both locations contain
rich implications of the environment where tap and swipe occur.

2.2 Bio-Acoustic Sensing in HCI

Bio-acoustic sensing technique has been employed in HCI to recog-
nize various hand-related interactions including hand gesture [10],
contact detection [35], tracking [38], and identification [49].

2.2.1 Passive sensing. For hand gesture recognition, researchers
utilized the passive sound signal transmitted through bone con-
duction propagation from the skin vibration [10, 15]. However,
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Figure 2: VibAware supports a set of gestures categorized in Within-hand, Surface and Hand Grasp. Each context has a more

specific type with a tap and swipe gesture.

these works inherited an armband form factor that limits capturing
fine-grained hand gestures. To this end, recent works adopt a smart-
watch to acquire bio-acoustic signals to recognize various hand
activities including grasp object sensing and gestures [25, 26]. Re-
cent works placed sensors on the wrist and fingers to acquire robust
signals [46-48, 66]. However, the passive sound signals generated
by microgestures tend to degrade quickly over distance.

2.2.2  Active sensing. To this end, researchers employed active bio-
acoustic approaches using audible (<18 kHz), ultrasonic (>20 kHz),
and wide (0~48 kHz) [2, 24, 63] frequencies. By adding an acoustic
transmitter (e. g., surface transducer or speaker), these works ro-
bustly recognized microgestures including thumb-to-finger tap and
fine-grained hand gestures. Still, these works require both receiver
and transmitter to be equipped within the hand (e. g., finger or back
of the hand). However, removing the surface transducer within the
hand would be desirable since it requires a large footprint due to the
associated hardware and battery. Meanwhile, Touch&Active [37]
implemented a grasp interface using active acoustic sensing applied
to objects and Interferi [20] developed on-body gesture recognition
using acoustic interferometry on arm and face. Still, previous works
do not fully support various interaction contexts like different hand
grasps gestures.

Based on the feasibility of acoustic sensing shown in the previous
studies, we propose a bio-acoustic method using both passive and
active sensing to achieve comparable microgesture recognition per-
formance in various interaction contexts. We exploit rich features
using numerous bandwidth covering from passive (10~500 Hz) to
active (10~6,000 Hz) bio-acoustic signals.

2.3 Microgestures in HCI

Microgestures are defined as small movements of the digits that do
not require moving the whole hand commonly performed but rarely
noticeable [57]. This allows users to perform the gestures anytime

and anywhere [6]. The main application of microgestures was eyes-
free interaction during everyday activities [5, 53]. Nowadays, the
scope of microgestures broadly covers from a full set of thumb-to-
finger gestures to 3D microgestures for providing expressive and
precise interactions in AR/VR [27, 50]. In particular, tap and swipe
gestures using the thumb, index, and middle fingers take a large
portion of microgestures based on the elicitation study [6].

To advance microgestures as input, various attempts have been
explored. First, the grasping microgesture concept has been intro-
duced with its superior performance when on the move and hands
are busy [45]. Researchers showed that finger movement in grasping
microgestures was rapid, easy, and elegant to perform [44]. Using
hand grasp information [11], the same microgestures could be used
to interact with different applications [57]. Moreover, hand grasp
itself could be used as a user interface [54]. Other attempts were
to recognize surface or object materials that users interact with to
provide distinctive control based on detected materials [36, 43, 59].
Thus, recognizing deeper interaction contexts like Surface and Hand
Grasp along with microgestures has a high potential to provide rich
interactions. We aim to support surface- and grasp-aware tap and
swipe gestures through a bio-acoustic sensing technique.

3 VIBAWARE DESIGN RATIONALES

We aim to understand the context associated with the performed
microgestures. To figure this out, we investigate representative
microgestures and their contexts. State-of-art microgestures related
works focused on providing robust recognition for various hand
poses with subtle inputs. With robust recognition, understanding
the associated environments around microgestures makes it possi-
ble to recall adaptive input controls with the same microgestures
for distinctive interaction scenarios. For instance, we could sum-
mon different user interfaces based on where (e.g., skin or object)
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or how (e.g., grasp styles) we perform microgestures. This adap-
tive approach broadens the interaction scope without adding extra
gestures or hardware.

3.1 Context-Aware Design Parameter

3.1.1 Interaction contexts. To be more specific, we categorize the
interaction context into Within-Hand, Surface, and Hand Grasp sim-
ilar to previous work [28]. We take one step further by presenting
each classifier of interaction context that instantly differentiates
both deeper contexts and gestures, as well as the whole pipeline
of how they distinguish context-aware microgestures, which was
underinvestigated by the previous work. From previous studies, we
learned that the interacting surface’s material could provide con-
text cues for interactions [22, 29]. Classifying the surface’s rigidity
makes it possible to change the interaction context without extra
gestures or input commands. For example, users tap and swipe on
the desk to perform work-related interface whereas on the skin
to incur personal interface. Additionally, Grasping microgestures
have also been highlighted to enable interactions under physical,
temporal, and socially constrained hand-busy situations [44, 45]. In
this work, we would like to explore the potential of using surface
materials and hand grasps as an interaction medium.

3.1.2  Specific types. We also consider the interacting surface ma-
terial stiffness as another context cue for interactions based on
several studies detecting the material of an object using acoustic
signal. Classifying the surface by soft or rigid material makes it
possible to incur mode changes in the interacting environment
without requiring extra gestures or input commands.

To recognize grasping microgestures, the system needs to differ-
entiate basic hand grasps [11] including Power, Intermediate, and
Precision grips. We defined 4 representative hand grasps consisting
of 3 palm-grasps (Cylindrical, Palmar, and Hook) and 1 side-grasp
(Tip). Rather than recognizing the specific object users hold, we
focus on detecting hand grasp type to infer interaction context.
This approach would be suitable for context-aware interactions
since utilizing hand configuration is more accessible than requiring
actual artifacts for initiating interactions [16].

3.1.3  Microgestures. Previously, researchers emphasized the im-
portance of microgestures including Tap, Press, Stretch, Swipe, and
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Draw which have the potential to provide direct and subtle inter-
actions [45]. Also, microgestures have been preferred for AR/VR
interfaces among other available input modalities like voice or key-
board/mouse. Here, tap and swipe gestures are preferred with their
ease of use, conceptual simplicity, and resemblance to interactions
in touchscreen-based devices among various microgestures [27].
Furthermore, the thumb and index finger have shown high flex-
ibility and comfort [6, 18]. To this end, we select tap and swipe
performed by thumb and index finger as our representative micro-
gestures (Figure 2).

3.2 Towards Robust Context-Aware Interaction

We propose a microgesture recognition with context binding ap-
proach to provide a robust interaction workflow. Figure 3 illustrates
the workflow consisting of 3 states, including Idle, Context Binding,
and Interaction. The system resides in Idle state if no pre-selected
gesture is detected to prevent false triggers during daily activities.
When users perform a pre-selected gesture (tap in our case) under
defined contexts, the system enters Context Binding state where the
system is ready to recognize tap and swipe gestures for the interac-
tion. We intentionally add Context Binding state before Interaction
state so that users could still cancel out executed interaction in
case of 1) unintended trigger or 2) misclassification of interaction
context. Here, users could either perform cancel-out gesture (e.g.,
double-tap) or do nothing to go back to Idle state. The time-out
duration remains 5 seconds. Otherwise, the system goes into the
Interaction state, where users’ subsequent tap or swipe gestures
occur in the bound context that they intended. After the gesture is
performed, it goes back to context binding state.

Although vision-based controls support intuitive and direct inter-
action with hand-tracking capabilities, it is not possible to support
fast and subtle hand interactions while understanding the external
field of view (FOV). To this end, we designed VibAware to enable ro-
bust and real-time interaction while understanding the surrounding
interaction contexts by tapping or swiping with no FOV limitation.
With the proposed system, we aim to integrate context awareness
into microgesture-based interactions for a seamless cross-spatial
interaction experience.

4 VIBAWARE SENSING PRINCIPLE

4.1 Bio-Acoustic Sensing Principle

The proposed tap and swipe recognition method is based on on-
body bio-acoustic sensing that analyzes and compares acoustic
signals’ temporal and spectral properties change. The acoustic sig-
nal contains anatomical information about body structures such as
bone, cartilage, tendon, and muscle tissues [55]. The acoustic signal
could also capture distinctive features directly from the objects with
various physical properties [29].

First, we obtained a change in acoustic signal from various hand
states. Based on the previous work, the shape of the hand with
a varied configuration of bones and muscles affects properties of
acoustic waves [24]. Varying hand configuration affects how sound
travels on the hand. The intensity of the signal is either increased or
decreased depending on the amount of tissue/bone that was in the
path of the wave [63]. Second, we also obtained bone conduction
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Figure 4: (A) Raw acoustic signals during tap gesture showed
large amplitude change. (B) We measured frequency re-
sponses to different contact conditions that exhibited dis-
tinctive active acoustic signal patterns.

sound propagation from the fingers to the wrist. The acoustic mea-
surements at the wrist reflect the tendon movements related to the
finger [47]. When users perform a tap gesture, the signal transfers
through the bones of the hand to the wristband microphone [1].

When users perform microgestures, the sound waves generated
and affected by finger movements and hand configurations are
transmitted via bone conduction. This provides a better signal-
to-noise ratio (SNR) than airborne sound [66]. Thus, we utilized
on-body passive and active acoustic sensing approaches.

4.2 VibAware Bio-Acoustic Sensing Technique

Our sensing technique utilizes active and passive acoustic signal
propagation around the hand. Rather than relying on either pas-
sive or active method [28, 63], we aim to capture both types to
understand the further context from microgestures. We placed a
transmitter and a receiver on the wrist (active setup), and another
receiver on the finger (passive setup). This setup allows us to acquire
the signal from the wrist and the finger separately.

Figure 4A shows the raw signal when the gestures are made
for a certain period of time. We observe that vibration generated
by gestures could affect both active and passive acoustic signals.
Compared to the passive acoustic signal, the active acoustic sig-
nal shows the periodical amplitude change from the sweep signal
emitted by the transmitter. In addition, we confirmed that active
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Figure 5: Observation of frequency response for various sur-
faces and hand grasps.
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bio-acoustic sensing contributes to the unique behavior according
to the contact state of the hand as shown in Figure 4B.

For active acoustic sources, we applied frequency sweep up
to 6,000 Hz which retained maximum information during body
propagation [62]. The frequency responses of different contact
states calculated by the Fast Fourier transform are distinguishable
where magnitude attenuates or increases compared to the non-
contact state. The active bio-acoustic method supports microgesture
recognition under different contact conditions of the hand, which
was not possible with passive acoustic signals only.

We also examined acoustic signal behaviors when carrying out
gestures under different conditions (Figure 5). The frequency re-
sponse of active signals under 6,000 Hz and passive signals under
500 Hz exhibit distinctive behaviors upon gestures. These sensor
behaviors demonstrate the potential of providing context-aware
gesture recognition with discernible and rich sensor signals.

4.3 Apparatus

Figure 6A illustrates the overall hardware configuration of our
work. The transmitter signal was generated by a surface transducer
driven by a function generator. The 1-axis accelerometers were
connected to an audio interface (US-4X4HR, TASCAM) to amplify
and digitize the analog signal. The audio interface was connected
to a 13" 2019 MacBook Pro with a 2.4 GHz Intel Core i5 processor
at a sampling rate of 44.1 kHz.

4.3.1 Transmitter. As an active acoustic source, we used the surface
transducer (COM-10917, Sparkfun). We attached the transducer to
the wrist with pressure-sensitive adhesive (PSA, 468MP, 3M) along
with a silicone wristband to support firm attachment. The trans-
ducer was driven by a function generator (DG1022, 2CH, 100 MSa/s,
RIGOL) that emitted sinusoidal sweep signals of 20~6,000 Hz at 2
Vpp. The sweep signal increased linearly from 20 to 6,000 Hz for
50 ms and then held at 6,000 Hz for another 50 ms. The duration
of one chirp was 100 ms. We specify the frequency range with
reference to a previous work [63].

4.3.2 Receiver. A two 1-axis accelerometers (VS-BV203-B, KEMET)
were chosen as our receivers because of their high sensitivity, built-
in amplifier, and wide working frequency bandwidth (10~15,000 Hz).
Using this receiver, we were able to robustly capture both pas-
sive (<500 Hz) and active (~6,000 Hz) acoustic signals to support
the 10 to 6,000 Hz frequency range. The size of the accelerometer
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is 8.4 mm X 11.4 mm X 2.9 mm, which is applicable for wearables.
The same adhesive and silicone wristband was applied to fix the
receiver firmly on the user’s wrist. We also attached the receiver to
the back of the thumb where we used PSA.

4.4 Context-Aware Tap & Swipe Recognition

The processing pipeline is divided into 3 steps including Gesture
Detection, Feature Extraction, and Gesture Recognition (Figure 6B).
We expect that the change in the frequency response from microges-
tures would create unique features for the recognition tasks. With
the proposed system, we further explore how different surfaces and
hand grasp affects the frequency response.

4.4.1 Gesture Detection. It is essential to detect the occurrence of
the gesture for processing gesture recognition. Figure 6B illustrates
the use of RMS (Root Mean Square) which is the average loudness in
the waveform as a cue for detecting gestures. When a finger touches
any surface, they produce distinguishable acoustic signals which
also increases the RMS. We employed RMS over conventional signal
processing like Short-time Fourier transform (STFT) since the RMS
supports a real-time system with low computation requirements.
We used both active and passive acoustic receivers for gesture
detection and they compensate each other for the occurrence of
false triggers. When both receivers’ RMS values exceed thresholds,
a fixed-length segment of data before and after the peak of RMS is
extracted for machine learning purposes.

4.4.2  Feature Extraction. For feature extraction, we applied mul-
tiple bandpass filters to obtain more unique features from raw
acoustic signals. Inspired by previous work on applying diverse
frequency bandwidths on wearables to improve the gesture recog-
nition performance [2], we carefully selected bandpass filters that
best reflect the characteristics of microgestures along with asso-
ciated contexts. Here, we used spectral features including Linear
Frequency Cepstral Coefficients (LFCC), centroid, roll-off, flatness,
bandwidth, flux, entropy, mean, standard deviation, sum, maximum,
and minimum. LFCC is suitable for equally extracting features over
the sensing range compared to Mel-Frequency Cepstral Coefli-
cients (MFCC) [2]. We also utilized waveform features including
RMS, variance, entropy, and zero crossing rate. All features were
extracted on sliding windows.

4.4.3  Gesture Recognition. We used a Support Vector Machine (SVM)
provided by the scikit-learn library as a classification algorithm.
The extracted data sample used to train the model is applied min-
max feature scaling normalization to ensure that all features have
a similar range. We chose a polynomial kernel because it gave the
best result. And finally, it classifies tap and swipe gestures.

5 PILOT STUDY

We conducted a pilot study to verify the basic performance of tap
and swipe gesture recognition on a variety of hardware configura-
tions (5 participants, 2 males, 3 females, mean age 24) to select the
appropriate sensor placement. As shown in Figure 7A, we chose
the wrist, thumb, and index finger as candidate locations for the
receiver. Due to the relatively large size and the potential signal
interference to the receiver, we only considered the wrist for plac-
ing the transmitter. Here, we compared the gesture recognition
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performance among various pre-processing methods to identify
bandpass filters and features that work well with acoustic sensing.

5.1 Setup

To investigate sensor configuration, we came up with 7 configu-
rations (C1~C7) as shown in Figure 7A. We limit the number of
receivers to 2 or below to minimize the sensor requirement. We
placed the receiver and the transmitter on the anterior and pos-
terior wrists while keeping them around the radius and the ulnar
on each side. Regardless of the user’s hand size, the landmarks for
sensors of the wrist (radius, ulnar) and back of the finger (thumb,
index) were marked and the sensor was attached to them. The se-
lected locations on the wrist support efficient transmission of the
bone-conducted vibration throughout the hand [4]. For C4 to C7 in
Figure 7A, we added another receiver on either the thumb or index
finger to capture passive acoustic sensing directly from gestures.

5.2 Procedure

To acquire data, we recorded the amplified data from an audio in-
terface using a 1-axis accelerometer (VS-BV203-B, KEMET). We
provided visualized instructions for users to perform a set of ges-
tures as shown in Figure 7B. Before the study, each participant had
a practice session. The study contained 5 sessions, each consisting
of 10 trials of 6 gestures in random order. Between each session,
participants took a 30-second break and researchers checked and
adjusted the location of the receiver and the transmitter if needed.
A total of 18,000 samples were acquired: 3000 samples for C1 &
C2 (single receiver, 5 participants X 2 configurations X 5 sessions
X 6 gestures X 10 trials) and 15,000 samples for C3~7 (5 partici-
pants X 5 configurations X 5 sessions X 6 gestures X 10 trials X
2 receivers). We segment the data to contain at least 0.5 s long
information for each sample (0.25 s before and after the onset of
peak point). Then, we applied 3 different pre-processing methods
to compare the gesture recognition performance as below.
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(1) Pre-Processing 1 (PP1): segment 2048 data points with over-
lapping 1024 data points for feature extraction without a
bandpass filter

(2) Pre-Processing 2 (PP2): same segmentation with applying
single bandpass filter to each data (finger-attached passive
sensor: 10~500 Hz, wrist-attached active sensor: 10~ 6,000 Hz)

(3) Pre-Processing 3 (PP3): same condition in PP2 with adding
more bandpass filters to wrist-attached active sensor (10~500
Hz, 100~3,000 Hz).

5.3 Result

We trained the SVM model (per-user) using 1 to 4 sessions and tested
it on the 5th session. Figure 7C illustrates the gesture recognition
accuracy on different configurations (C1~C7) and pre-processing
methods (PP1~PP3). Regarding the pre-processing method, we
observed an improvement in recognition accuracy from PP1 to
PP3. The performance was improved when employing multiple
bandpass filters. This tells us that it is crucial to focus on the ef-
fective range of bandwidth to extract meaningful acoustic features.
For all pre-processing methods, C4 achieved the highest average ac-
curacy of 91.5%. As expected, a single receiver shows worse gesture
recognition accuracy (<83%) compared to dual receivers (>88%). We
also noticed that the passive acoustic receiver worked best while
attached to the thumb compared to the index finger and the wrist.
To this end, we picked C4 (1 transmitter & 1 receiver on the ante-
rior wrist along with another receiver on the thumb) as the main
hardware configuration.

5.4 Insight For Context-Aware Sensing

In this research, we adopted the C4 (thumb & wrist anterior side)
due to the overall better performance and future hardware design,
even though the final result of C5 (thumb & wrist posterior side)
shows the highest accuracy with PP3. Regarding future hardware
design, it is common for the MCU and other sensors of typical
smartwatches to be located on the wrist’s outer side. Due to the
active setup, we found it more appropriate to avoid interfering with
existing areas and add elements inner side of the wrist where there
is room for integration.

Previously, we observed that using multiple bandpass filters
influenced the performance of the ML model. As confirmed in the
pilot study, we chose 4 bandpass filters for the active signal and a
single bandwidth for the passive signal as shown in Figure 8. We
decided on the final bandwidths based on the following reasons.

e 10~100 Hz: Bandwidth including coarse human activity

e 100~3,000 Hz: The most changeable bandwidth where the
active signal can be affected

e 3,000~6,000 Hz: Rest bandwidth of whole bandwidth exclud-
ing 10~3,000 Hz

e 10~6,000 Hz: Full bandwidth covering active acoustic source

6 VIBAWARE PIPELINE

VibAware employed a context binding to initialize the context-
aware gesture recognition workflow as shown in Figure 8. We
designed multiple SVM classifiers to support robust interaction.
Initially, we used the tap gesture as the pre-selected gesture to
establish context binding. Once bound, the subsequent gesture
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Figure 8: VibAware’s context-aware microgesture recognition
pipeline using bio-acoustic sensing.

recognition operates under the same bound context until cancel-
out gesture or time-out events occur.

6.1 Feature Extraction Procedure

We store acoustic signals from active and passive receivers in 2
buffer queues using PyAudio. Each queue contains 12,288 data
points (6 chunks x 2048 data points) and computes each RMS value
of the last chunk. If they both exceed each of their threshold, the
system stores and combines 5 additional chunks to form 11 chunks.
We form 0.5 s amount of data (22,050 data points) by trimming 478
data points from the beginning. Then, we used bandpass filters
and extracted the features from the filtered data with a 4,096-point
Hamming window. Here, the window shifted with a length of 1,024
points. We selected features from time and frequency domains (Fig-
ure 8) which contain 3,535 feature dimensions from 707 features
X 5 bandpass filters. Lastly, we concatenated features into a single
list and applied normalization.

6.2 Overall Classification Process

After feature extraction, the input features are fed into the classifier
depending on several conditions. If the context has not been bound,
the input features are first passed to Microgesture Only Classifier
to detect the initialization gesture, and if it is a tap gesture, it goes
to Interaction Context Classifier for context binding initialization.
Meanwhile, if the context has already been bound, they are fed into
the Context-Aware Tap & Swipe Classifier. Here, we applied the clas-
sification model based on the type of bound context, and it will run
unless it is a cancel-out gesture. In our work, we recognize, down to
the specific gesture, which is different from previous works [28, 43]
where a series of operations were required to perform gesture recog-
nition under various contexts. The overall processing of feature
extraction and prediction took 78 ms and 15 ms, respectively. The
total latency took up to 300 ms which reflects the time to capture
5 additional chunks of data (232 ms) upon gesture detection. A
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Evaluation Setup

Types and Gestures
Wood Metal Glass Skin
TTLTS, IS | TT,TS,IT,1S | TT,TS,IT,IS | TT,TS,IT,IS

Cylindrical | Palmar Hook Tip
TT,TS,1T,1S TT,TS,IT, IS TT, TS IT, IS

Landmark of sensors

Figure 9: (A) System evaluation setup. The table shows a
gesture set used in the user study (TT: Thumb Tap, TS: Thumb
Swipe, IT: Index Tap, and IS: Index Swipe). (B) We evaluated
Within-Hand, Surface, and Hand Grasp. For Hand Grasp, we
provided 3D printed objects (dimensions: cm). (C) A landmark
of sensor locations.

commonly permitted delay to work in real-time of hand gesture
recognition is less than 300ms. Even though it is a little bit over, it
could reduce the latency with advanced processing methods.

7 SYSTEM EVALUATION

To quantify the performance of the proposed bio-acoustic sensing
technique, we evaluated the classification accuracy for both Context
Binding and Context-Aware Tap & Swipe Classifiers. Since our pro-
posed system consists of multiple classifiers to enable context-aware
gesture recognition, we devised our evaluation to cover all aspects
of system performance. We recruited 14 participants (6 males and
8 females, a mean age of 27). The study took approximately 2 hours.

7.1 Study Setup

As shown in Figure 9A, we employed C4 configuration (single
transmitter & receiver on the anterior wrist and another receiver
on the thumb). Participants were given a visual prompt to perform
randomly ordered gestures for data acquisition. We provided a
practice session before the study. Each study consisted of 5 sessions
with 10 trials of all gestures in random order. Between each session,
participants took a 1-minute break and researchers corrected the
location of the receiver and the transmitter. Adjusting the hardware
is to ensure that we collected data from the same locations on
the hand. During data collection, we did not strictly constrain the
participants’ hand posture (e.g., elbow position, wrist rotation) in a
sitting state in order to evaluate our system in a wild setting.

We applied a per-user SVM classifier (C=5.0, y=0.001, and polyno-
mial kernel) for all evaluations since the different body composition
requires a per-user classifier when using a bio-acoustic sensing [1].
We also conducted a leave-one-session-out cross-validation where we
trained 4 sessions and tested the model on 1 session (not included
in the training session) for each participant on all sections.
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7.2 Context Binding Classification

7.2.1 Microgesture Classification. We carried out the classification
of four microgestures regardless of interaction contexts. We con-
sidered the same gesture from different interaction contexts as the
same class. We also balanced the number of data for each gesture
class. Figure 10A showed that the average accuracy of microgesture
classification was 93.9% (SD=2.6).

7.2.2  Interaction Context Classification. We examined accuracy on
interaction context classification using tap gestures among Within-
Hand, Surface, and Hand Grasp. We used data from studies of sys-
tem evaluation where all data for each interaction context were
regarded as a single class. We acquired a total of 42,000 samples
from 2 receivers. Since the number of data in Within-Hand case
is smaller, we reduced the number of data from Surface and Hand
Grasp when training the dataset. This prevents us from produc-
ing a biased model for interaction context classification. Using tap
gestures, the average accuracy of interaction context classification
was 98.9% (SD=0.7). Figure 10B shows that the proposed system
robustly classifies interaction contexts.

7.3 Context-Aware Tap & Swipe Classification

7.3.1  Within-Hand Classification. We asked participants to per-
form tap and swipe gestures. A total of 2,800 samples were acquired
(14 participants X 5 sessions X 2 gestures X 10 trials X 2 receivers).
The leave-one-session-out cross-validation accuracy across all partic-
ipants showed 97.9% (SD=2.0). Figure 10C indicates that our system
supports robust Within-Hand tap and swipe gesture recognition.

7.3.2  Surface Type Classification. In this study, we confirmed the
capability of microgesture recognition on various surfaces. We
chose wood, metal, glass, and skin as representative surface materi-
als. As shown in Figure 9A, we asked the participants to perform the
tap and swipe gestures. In each session, the participants performed
16 gestures (4 material types X 4 gestures) 10 times in a random
order (e.g., Glass TT-Skin IS-Metal TS-etc). For skin surface data
collection, we asked participants to perform the gestures on the par-
ticipant’s other palm. We acquired 22,400 samples (14 participants
X 5 sessions X 16 gestures X 10 trials X 2 receivers).

We averaged the accuracies across participants for all 16 classes
using leave-one-session-out cross-validation. As shown in Figure 10D,
we observed low performance (64.0%, SD=9.0). We observed fre-
quent confusion between the wood, glass, and metal surfaces. To
explore the potential of classifying the surface type based on ma-
terial properties, we categorize surfaces based on stiffness. Here,
we consider wood, glass, and metal as “Rigid” and skin as “Soft”
material, reducing the total number of classes to 8. We adjusted a
number of data to keep a 1-to-1 ratio between “Rigid” and “Soft”
materials for training the model. As shown in Figure 10E, the over-
all accuracy (94.4%, SD=2.4) improved when we grouped surface
types by stiffness.

7.3.3  Hand Grasp Type Classification. In this evaluation, we asked
participants to perform the gesture set defined in Figure 2 including
Cylindrical, Palmar, and Hook, and Tip. We guided participants to
use either the thumb or index finger with Hook and Tip grasps
which better represent the natural hand behaviors on given grasps.
We used 3D-printed objects made with PLA to induce representative
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Figure 10: Confusion matrix across the users for classifying (A) microgestures regardless of interaction contexts, (B) interaction
contexts, (C) within-hand tap & swipe, (D) microgestures on all surfaces, (E) microgestures on grouped surface types (rigid &
soft), (F) microgestures with hand grasps, (G) microgestures within hand grasps.

hand grasps we selected. Although their properties may not be the
same as real objects, we focus our investigation on the microgesture
recognition under various hand configurations.

In each session, participants carried out 12 gestures (2 grasp
types X 4 gestures and 2 grasp types X 2 gestures) 10 times in
random order (e.g., Palmar IT-Hook TT-Cylindrical TS). Each partic-
ipant took 5 sessions. Since participants performed many gestures
in a random order, we constantly provided visual prompts and ver-
bal reminders. We collected a total of 16,800 samples (14 participants
X 5 sessions X 12 gestures X 10 trials X 2 receivers).

The average accuracy across all participants came out to be
85.7% (SD=5.2). As shown in Figure 10F, the same gesture on dif-
ferent grasps was a main source of error. We also observed larger
errors in IT and IS of the Cylindrical grasp due to the similar phys-
ical finger movements caused by the grasping posture. To further
confirm the performance of microgesture recognition after context
binding, we also trained a model for distinguishing 4 microgestures
within all hand grasps. The overall accuracy was 94.1% (SD=2.6)
which guarantees robust microgesture recognition after the context
binding stage (Figure 10G).

7.4 Ablation Analysis on Bio-Acoustic Sensing

As reported in Pilot Study, the performance of C4~C7 using both
the passive and active sensing approaches was higher than that of
C1 and C2 using only the active sensing approach. In this section,
we examined the recognition accuracy among active-only, passive-
only, and active+passive acoustic sensing approaches.

We used the collected data from the study to analyze the classifi-
cation performances of all cases shown in Figure 2 for each sens-
ing approach. As expected, the active+passive approach showed a

higher accuracy (83.8%) than active-only (74.5%) and passive-only ap-
proaches (66.8%). We also analyzed performance only on 4 microges-
tures. Again, the active+passive showed the higher accuracy (93.9%)
than passive-only (89.5%) and active-only (77.2%). With the results,
we validated the superior performance of using both active and pas-
sive acoustic signals for context-aware microgesture recognition.

7.5 Robustness against False Positive

We validated the robustness of our system against false triggers
during daily activities. We asked participants to carry out daily
natural behaviors related to representative grasps (e.g., Drinking
water while holding a cup, lifting a box, etc.). It was specified in
the grasp types, but the actions were to include cases that might
occur in everyday life. We used 3 out of 5 sessions for the training
set, and the rest 2 sessions as the test set. A total of 4200 s data (14
participants X 4 grasps related daily behaviors X 5 sessions X 15 s
trial). We observed the false trigger error of 1.68%. Given the low
error rate using a small set of training dataset, we expect to further
reduce the error rate with more daily activity data collection.

8 EXAMPLE APPLICATIONS

We present several example applications to showcase the bene-
fit and usability of VibAware. Through example applications, we
confirmed the potential of context-aware gesture recognition for
interactions with various spatial and environmental contexts.

8.1 Cross-Spatial Interaction

Our system enables carrying out cross-spatial interactions. The
first application utilizes various surfaces as a cue for different inter-
actions. For example, users can perform a tap gesture on the skin
to capture the scene using AR glasses. Then, users can display it on
the monitor by simply tapping the desk (Figure 11A). Figure 11B
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Figure 11: Example applications of VibAware. (A), (B) The
user can hover between various physical spaces for cross-
spatial interactions and (C)~(E) carry out quick & subtle fin-
ger interactions even if hands are occupied.

illustrates potential applications of using VibAware as a commu-
nication medium. The users perform Within-Hand swipe to share
information. Moreover, we could utilize Within-Hand tap & swipe
to support subtle and private interactions.

8.2 Quick & Subtle Interaction with Busy Hands

VibAware benefits users when hands are occupied with various
Hand Grasp. For example, VibAware infers that a user is carrying
a heavy object if Palmar grasp is detected (Figure 11C). Since it is
cumbersome for users to perform any interactions while carrying
an object, the system only allows tap & swipe gestures. VibAware
can be employed for writing with Tip grasp (Figure 11D). In this
case, users tap a pen body to play/pause a video and swipe the pen
to skip forward. In addition, our system could distinguish between
thumb and index finger actions as discrete selection commands.
When users hold an umbrella using a Cylindrical grasp, they can
utilize a thumb/index finger swipe gesture to zoom in or out in an
AR map application (Figure 11E).

9 DISCUSSION AND LIMITATION

Our work focused on enabling microgesture recognition while un-
derstanding the surrounding context. Our demonstrated sensing
method and pipeline allow quick and robust cross-spatial interac-
tions with no FOV limitation like the vision-based approach.

By further analyzing the performances, we found that passive
acoustic sensing contributes to recognizing gestures, while active
acoustic sensing contributes to understanding interaction contexts.
The low performance on the surface type (16 classes) is due to
the similar hardness and a non-direct way of measurement. Thus,
additional cues such as microphones could allow more detailed
material-based interactions. Although it cannot be directly com-
pared to previous studies [28], they showed 82.35% of discriminating
4 gripping objects with a double IMU on the thumb and index finger.
We demonstrated a comparable accuracy of 85.7% from the hand
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grasp type, even with more cases. Based on the results and example
scenarios, context-aware gesture recognition is helpful for spatial
interaction in hand-busy situations.

About the scalability, the range of contexts in this study includes
Within-Hand, Surface, and Hand Grasp. We confirmed the potential
of utilizing bio-acoustic sensing to support context-aware micro-
gestures. We plan to expand the scope of “Interaction Context” in
terms of adding different properties (e.g., texture, weight, or size)
or increasing the number of surfaces and hand grasps. Meanwhile,
since our primary research goal is to bind a context and execute
microgesture recognition after context binding, we did not specify
the implementation of the cancel-out gesture. We will consider
simple and conventional gestures while different from tap&swipe
gestures like flick or double-tap. For the time-out duration, we set
5s. However, a user study may be needed to explore the appropriate
duration time.

Our current system relies on wearing the device on the finger
and wrist to support robust performance. Although our approach
is aligned with upcoming wearables [67], wearing a ring could still
cause inconvenience to users not familiar with wearing accessories.
In future work, we will investigate sensing techniques that do not
require a device worn on the finger. The "wrist-only" condition
would be a viable option. Also, our hardware configuration does
not support the wireless setup at the current stage. In this study, we
employed a wired setup to obtain high-quality ground truth data.
In future device configurations, we will utilize a wireless audio IC
like AD5930 [3] to support wireless setup and robust performance.
In addition, the audible frequency range was used for the driving
signal. No participant problems were reported, although detectable.
In a lab, ambient noise was 46 dB, increasing to 47 dB when the
transmitter was on. Using a 3D-printed Thermoplastic Polyurethane
cover brought levels back to 46 dB similar to home/office noise. The
future design could include absorbent materials for the active source
which will reduce the noise.

The cross-user performance was lower due to the potential user
dependency on the bio-acoustic sensing approach. To this end,
we plan to explore the newly introduced calibration approach to
reduce user dependency on recognition, such as collecting a set of
calibration data during the initialization phase. For example, we
would ask the user to provide a set of interaction data for a few-shot
learning to adjust the overall model for each user similar to [58].

10 CONCLUSION

We present VibAware, bio-acoustic sensing that enables context-
aware tap and swipe gesture recognition. Utilizing an acoustic trans-
mitter and accelerometer, we support active and passive acoustic
sensing through wrist- and thumb-mounted approaches. Our sys-
tem recognizes in which contexts the microgestures occur including
Within-Hand, Surface, and Hand Grasp. This enables a broad inter-
action scenario even with the same set of gestures. We confirmed
the hardware configuration and employed multiple bandpass filters
to characterize frequency response. Evaluation results confirmed
that our system recognizes interaction contexts while supporting
tap and swipe gestures. Our work will expand interaction con-
texts by understanding the deeper context where users perform
microgestures.
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